Thomas-Fermi approximation for Bose-Einstein condensates in traps -: art. no. 043603

被引:26
|
作者
Schuck, P
Viñas, X
机构
[1] Univ Grenoble 1, Inst Sci Nucl, CNRS, IN2P3, F-38026 Grenoble, France
[2] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
关键词
D O I
10.1103/PhysRevA.61.043603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Thomas-Fermi theory for Bose-Einstein condensates in inhomogeneous traps is revisited. The phase-space distribution function of the condensate in the Thomas-Fermi limit ((h) over bar-->0) is f(0)(R,p)proportional to(mu-H-cl) where H-cl is the classical counterpart of the self-consistent Gross-Pitaevskii Hamiltonian. Starting from this distribution function the Thomas-Fermi kinetic energy is calculated for any number of particles. Good agreement between the Gross-Pitaevskii and Thomas-Fermi kinetic energies is found even for low and intermediate particle numbers N. Application of this Thomas-Fermi theory to the attractive case and to the calculation of the frequencies of the monopole and quadrupole excitations in the sum rule approach yields conclusive results as well. The difference with the usual Thomas-Fermi approach to the Bose-Einstein condensates (large-N limit) is discussed in detail.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Thomas-Fermi approximation for Bose-Einstein condensates in traps
    Schuck, P.
    Vinas, X.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (04): : 436031 - 436031
  • [2] On Bose-Einstein condensates in the Thomas-Fermi regime
    Dimonte, Daniele
    Giacomelli, Emanuela L.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (04)
  • [3] Self-Gravitating Bose-Einstein Condensates and the Thomas-Fermi Approximation
    Toth, Viktor T.
    GALAXIES, 2016, 4 (03):
  • [4] Dynamics of Bose-Einstein condensates in double-well potentials -: art. no. 043603
    Jääskeläinen, M
    Meystre, P
    PHYSICAL REVIEW A, 2005, 71 (04):
  • [5] Extension of the Thomas-Fermi approximation for trapped Bose-Einstein condensates with an arbitrary number of atoms
    Mateo, A. Munoz
    Delgado, V.
    PHYSICAL REVIEW A, 2006, 74 (06):
  • [6] Ground-state properties of trapped Bose-Einstein condensates: Extension of the Thomas-Fermi approximation
    Munoz Mateo, A.
    Delgado, V.
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [7] Comparison between the numerical solutions and the Thomas-Fermi approximation for atomic-molecular Bose-Einstein condensates
    Santos, Leonardo S. F.
    Pires, Marcelo O. C.
    Giugno, Davi
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (03):
  • [8] Comparison between the numerical solutions and the Thomas-Fermi approximation for atomic-molecular Bose-Einstein condensates
    Leonardo S. F. Santos
    Marcelo O. C. Pires
    Davi Giugno
    The European Physical Journal D, 2015, 69
  • [9] Beyond the Thomas-Fermi approximation for a trapped condensed Bose-Einstein gas
    Fetter, AL
    Feder, DL
    PHYSICAL REVIEW A, 1998, 58 (04): : 3185 - 3194
  • [10] Thomas-Fermi Approximation for Coexisting Two Component Bose-Einstein Condensates and Nonexistence of Vortices for Small Rotation
    Aftalion, Amandine
    Noris, Benedetta
    Sourdis, Christos
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (02) : 509 - 579