Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning

被引:44
作者
Gao, Hanchao [1 ,2 ]
Zhao, Chengjiang [1 ,2 ]
Xiang, Xi [3 ]
Li, Yong [3 ]
Zhao, Yanli [1 ]
Li, Zesong [1 ]
Pan, Dengke [4 ]
Dai, Yifan [5 ]
Hara, Hidetaka [6 ]
Cooper, David K. C. [6 ]
Cai, Zhiming [1 ]
Mou, Lisha [1 ]
机构
[1] Shenzhen Univ, Affiliated Hosp 1, Shenzhen Xenotransplantat Med Engn Res & Dev Ctr, Shenzhen Peoples Hosp 2, Shenzhen 518035, Peoples R China
[2] Sun Yat Sen Univ, Zhongshan Sch Med, Dept Biochem, Guangzhou 510080, Guangdong, Peoples R China
[3] BAB, Shenzhen 518083, Peoples R China
[4] Chinese Acad Agr Sci, Inst Anim Sci, Minist Agr, Key Lab Farm Anim Genet Resource & Germplasm Inno, Beijing 100193, Peoples R China
[5] Nanjing Med Univ, Jiangsu Key Lab Xenotransplantat, Nanjing 210029, Jiangsu, Peoples R China
[6] Univ Alabama Birmingham, Dept Surg, Xenotransplantat Program, Birmingham, AL 35233 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CRISPR/Cas9; Double-knockout pigs; Handmade cloning; Xenotransplantation; GENETICALLY-ENGINEERED PIGS; DOUBLE-KNOCKOUT PIGS; INITIAL IN-VITRO; GLYCOLYLNEURAMINIC ACID; CORNEAL XENOTRANSPLANTATION; HEART-TRANSPLANTATION; CRISPR-CAS9; SYSTEM; NUCLEAR TRANSFER; GENERATION; CELLS;
D O I
10.1262/jrd.2016-079
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target alpha 1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications. Key words: CRISPR/Cas9, Double-knockout pigs, Handmade cloning, Xenotransplantation
引用
收藏
页码:17 / 26
页数:10
相关论文
共 48 条
[1]   Recent advances in genome editing and creation of genetically modified pigs [J].
Butler, James R. ;
Ladowski, Joseph M. ;
Martens, Gregory R. ;
Tector, Matthew ;
Tector, A. Joseph .
INTERNATIONAL JOURNAL OF SURGERY, 2015, 23 :217-222
[2]   Generation of B Cell-Deficient Pigs by Highly Efficient CRISPR/Cas9-Mediated Gene Targeting [J].
Chen, Fengjiao ;
Wang, Ying ;
Yuan, Yilin ;
Zhang, Wei ;
Ren, Zijian ;
Jin, Yong ;
Liu, Xiaorui ;
Xiong, Qiang ;
Chen, Qin ;
Zhang, Manling ;
Li, Xiaokang ;
Zhao, Lihua ;
Li, Ze ;
Wu, Zhaoqiang ;
Zhang, Yanfei ;
Hu, Feifei ;
Huang, Juan ;
Li, Rongfeng ;
Dai, Yifan .
JOURNAL OF GENETICS AND GENOMICS, 2015, 42 (08) :437-444
[3]   Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Yongsub ;
Kweon, Jiyeon ;
Kim, Heon Seok ;
Bae, Sangsu ;
Kim, Jin-Soo .
GENOME RESEARCH, 2014, 24 (01) :132-141
[4]   Distribution of Non-Gal Antigens in Pig Cornea: Relevance to Corneal Xenotransplantation [J].
Cohen, David ;
Miyagawa, Yuko ;
Mehra, Ruhina ;
Lee, Whayoung ;
Isse, Kumiko ;
Long, Cassandra ;
Ayares, David L. ;
Cooper, David K. C. ;
Hara, Hidetaka .
CORNEA, 2014, 33 (04) :390-397
[5]  
Cong L, 2015, METHODS MOL BIOL, V1239, P197, DOI 10.1007/978-1-4939-1862-1_10
[6]   The role of genetically engineered pigs in xenotransplantation research [J].
Cooper, David K. C. ;
Ekser, Burcin ;
Ramsoondar, Jagdeece ;
Phelps, Carol ;
Ayares, David .
JOURNAL OF PATHOLOGY, 2016, 238 (02) :288-299
[7]   Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes [J].
Crispo, M. ;
Mulet, A. P. ;
Tesson, L. ;
Barrera, N. ;
Cuadro, F. ;
dos Santos-Neto, P. C. ;
Nguyen, T. H. ;
Creneguy, A. ;
Brusselle, L. ;
Anegon, I. ;
Menchaca, A. .
PLOS ONE, 2015, 10 (08)
[8]   CRISPR Bacon: A Sizzling Technique to Generate Genetically Engineered Pigs [J].
DeMayo, Franco J. ;
Spencer, Thomas E. .
BIOLOGY OF REPRODUCTION, 2014, 91 (03)
[9]   Piglets born from handmade cloning, an innovative cloning method without micromanipulation [J].
Du, Y. ;
Kragh, P. M. ;
Zhang, Y. ;
Li, J. ;
Schmidt, M. ;
Bogh, I. B. ;
Zhang, X. ;
Purup, S. ;
Jorgensen, A. L. ;
Pedersen, A. M. ;
Villemoes, K. ;
Yang, H. ;
Bolund, L. ;
Vajta, G. .
THERIOGENOLOGY, 2007, 68 (08) :1104-1110
[10]   Multigene Knockout Utilizing Off-Target Mutations of the CRISPR/Cas9 System in Rice [J].
Endo, Masaki ;
Mikami, Masafumi ;
Toki, Seiichi .
PLANT AND CELL PHYSIOLOGY, 2015, 56 (01) :41-47