Synthesis and characterization of Graphene oxide/Zinc oxide nanorods sandwich structure

被引:13
作者
Boukhoubza, I. [1 ,3 ]
Khenfouch, M. [2 ,3 ]
Achehboune, M. [1 ,3 ]
Mouthudi, B. [2 ]
Zorkani, I. [1 ]
Jorio, A. [1 ]
机构
[1] Univ Sidi Mohammed Ben Abdellah, Fac Sci Dhar el Mahraz, Lab Solid State Phys Lab, Grp Nanomat & Renewable Energies, POB 1796, Atlas Fez 30000, Morocco
[2] Univ South Africa, Dept Phys, Coll Sci Engn & Technol, Sci Campus,Cnr Christiaan Wet & Pioneer Ave, ZA-1709 Johannesburg, South Africa
[3] Univ South Africa, Africa Graphene Ctr, Dept Phys, Coll Sci Engn & Technol, Sci Campus,Cnr Christiaan Wet & Pioneer Ave, ZA-1709 Johannesburg, South Africa
来源
1ST INTERNATIONAL ONLINE CONFERENCE ON NANOSCIENCE & NANOTECHNOLOGY (N@NO'2017) | 2018年 / 984卷
关键词
ZNO NANORODS; HYDROTHERMAL SYNTHESIS; FIELD-EMISSION; GAS SENSOR; SHEETS; NANOCOMPOSITE; PERFORMANCE; COMPOSITES; NANOTUBES; FILM;
D O I
10.1088/1742-6596/984/1/012005
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene-ZnO nanostructures composite materials have been used as very efficient candidates for various optoelectronic applications. Nowadays, the composite structure formation of ZnO nanostructures with graphene or graphene oxide is a novel, cost effective and efficient approach to control the morphology, surface defect states, band gap of ZnO nanocrystals. In this paper, we have prepared ZnO nanorods between two layers graphene oxide (GO/ZnO NRs/GO) via a simple hydrothermal method. Their morphology, structural and optical properties have been investigated. The obtained results of our composites GO/ZnO NRs/GO presented here showing an enhancement in the structural and optical properties. Thus may hold great promise to the development of the optoelectronic devices.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method [J].
Alver, U. ;
Zhou, W. ;
Belay, B. ;
Krueger, R. ;
Davis, K. O. ;
Hickman, N. S. .
APPLIED SURFACE SCIENCE, 2012, 258 (07) :3109-3114
[2]   Field Emission from Zinc Oxide Nanobelts [J].
Asthana, A. ;
Yap, Y. K. ;
Shahbazian-Yassar, R. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (03) :2277-2282
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions [J].
Beura, Rosalin ;
Thangadurai, P. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 102 :168-177
[5]   Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2008, 78 (08)
[6]   Sonication-Assisted Fabrication and Post-Synthetic Modifications of Graphene-Like Materials [J].
Cravotto, Giancarlo ;
Cintas, Pedro .
CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (18) :5246-5259
[7]   Zinc oxide nanowires [J].
Cui, Jingbiao .
MATERIALS CHARACTERIZATION, 2012, 64 :43-52
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[10]   Zinc Oxide Nanostructure-Modified Textile and Its Application to Biosensing, Photocatalysis, and as Antibacterial Material [J].
Hatamie, Amir ;
Khan, Azam ;
Golabi, Mohsen ;
Turner, Anthony P. F. ;
Beni, Valerio ;
Mak, Wing Cheung ;
Sadollahkhani, Azar ;
Alnoor, Hatim ;
Zargar, Behrooz ;
Bano, Sumaira ;
Nur, Omer ;
Willander, Magnus .
LANGMUIR, 2015, 31 (39) :10913-10921