Local existence, global existence, and scattering for the nonlinear Schrodinger equation

被引:33
作者
Cazenave, Thierry [1 ,2 ]
Naumkin, Ivan [1 ,2 ]
机构
[1] Univ Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
关键词
Nonlinear Schrodinger equation; local existence; global existence; scattering; CAUCHY-PROBLEM;
D O I
10.1142/S0219199716500383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct for every alpha > 0 and gimel is an element of C a class of initial values u(0) for which there exists a local solution of the nonlinear Schrodinger equation iu(t) vertical bar Delta u vertical bar gimel vertical bar u vertical bar(alpha)u = 0 on R-N with the initial condition u(0, x) = u(0). Moreover, we construct for every alpha > 2/ N a class of (arbitrarily large) initial values for which there exists a global solution that scatters as t -> infinity.
引用
收藏
页数:20
相关论文
共 17 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[3]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[4]  
Cazenave T., NAGOYA MATH IN PRESS
[5]   A Fujita-type blowup result and low energy scattering for a nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Correia, Simao ;
Dickstein, Flavio ;
Weissler, Fred B. .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02) :146-161
[6]   On the well-posedness for NLS in Hs [J].
Fang, Daoyuan ;
Han, Zheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) :1438-1455
[7]  
GINIBRE J, 1984, ANN I H POINCARE-AN, V1, P309
[8]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[9]  
GINIBRE J, 1994, ANN I H POINCARE-PHY, V60, P211
[10]  
KATO T, 1989, LECT NOTES PHYS, V345, P218