A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum

被引:66
作者
de Oliveira, N. [1 ]
Joyeux, D. [2 ]
Phalippou, D. [2 ]
Rodier, J. C. [2 ]
Polack, F. [1 ]
Vervloet, M. [1 ]
Nahon, L. [1 ]
机构
[1] Synchrotron Soleil, Orme Merisiers, F-91192 Gif Sur Yvette, France
[2] Inst Opt, Lab Charles Fabry, Palaiseau, France
关键词
Fourier transform spectrometers; light interferometry; measurement by laser beam; mirrors; optical design techniques; synchrotron radiation; transient response; ultraviolet spectrometers; SCHUMANN-RUNGE BANDS; CROSS-SECTION MEASUREMENTS; RAY LASER INTERFEROMETRY; SUPER-ACO; SPECTROSCOPY; PLASMA; O-2; PERFORMANCE; DIAGNOSTICS; CONSTANTS;
D O I
10.1063/1.3111452
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of delta sigma=0.33 cm(-1) (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to lambda=58 nm with an ultimate resolving power of 500 000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator-based synchrotron radiation beamline (Super-ACO facility, LURE, Orsay, France). A high resolution spectrum of O-2 (the Schumann-Runge absorption bands, 185-200 nm) was computed from recorded interferograms using the beamline monochromator at the zeroth order to feed the instrument with an 11% relative bandwidth "white" beam (2003). These UV measurements are very close to those found in the literature, showing nominal performances of the FT spectrometer that should translate into an unprecedented resolving power at shortest VUV wavelengths. A recent upgrade (2007) and future developments will be discussed in light of the current installation of the upgraded FT spectrometer as a permanent endstation for ultrahigh resolution absorption spectrometry on the VUV beamline DESIRS at SOLEIL, the new French third generation synchrotron facility.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Metal-surface mapping by means of soft-x-ray laser interferometry [J].
Albert, F ;
Zeitoun, P ;
Jaeglé, P ;
Joyeux, D ;
Boussoukaya, M ;
Carillon, A ;
Hubert, S ;
Jamelot, G ;
Klisnick, A ;
Phalippou, D ;
Ros, D ;
Zeitoun-Fakiris, A .
PHYSICAL REVIEW B, 1999, 60 (15) :11089-11094
[2]  
Born M., 1975, PRINCIPLE OPTICS
[3]  
Chamberlain JohnErnest., 1979, The principles of interferometric spectroscopy
[4]   ULTRASENSITIVE MULTIPLE-REFLECTIONS INTERFEROMETER [J].
CHANDRA, S ;
ROHDE, RS .
APPLIED OPTICS, 1982, 21 (09) :1533-1535
[5]   Analysis of illumination coherence properties in small-source systems such as synchrotrons [J].
Chang, C ;
Naulleau, P ;
Attwood, D .
APPLIED OPTICS, 2003, 42 (14) :2506-2512
[6]   EXTREME-ULTRAVIOLET INTERFEROMETRY AT 15.5 NM USING MULTILAYER OPTICS [J].
DASILVA, LB ;
BARBEE, TW ;
CAUBLE, R ;
CELLIERS, P ;
CIARLO, D ;
MORENO, JC ;
MROWKA, S ;
TREBES, JE ;
WAN, AS ;
WEBER, F .
APPLIED OPTICS, 1995, 34 (28) :6389-6392
[7]  
De Oliveira N, 2007, AIP CONF PROC, V879, P447
[8]   A Fourier transform spectrometer without beam splitter for the VUV-EUV range [J].
De Oliveira, N ;
Joyeux, D ;
Phalippou, D .
SURFACE REVIEW AND LETTERS, 2002, 9 (01) :655-660
[9]  
DEOLIVEIRA N, 2001, THESIS U PIERRE MARI
[10]   Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings [J].
Filevich, J ;
Kanizay, K ;
Marconi, MC ;
Chilla, JLA ;
Rocca, JJ .
OPTICS LETTERS, 2000, 25 (05) :356-358