Vertex distinguishing colorings of graphs with Δ (G)=2

被引:66
作者
Balister, PN [1 ]
Bollobás, B [1 ]
Schelp, RH [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
graph colorings;
D O I
10.1016/S0012-365X(01)00287-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a paper by Burris and Schelp (J. Graph Theory 26 (2) (1997) 70), a conjecture was made concerning the number of colors chi'(s)(G) required to proper edge-color G so that each vertex has a distinct set of colors incident to it. We consider the case when Delta(G) = 2, so that G is a union of paths and cycles. In particular we find the exact values of chi'(s)(G) and hence verify the conjecture when G consists of just paths or just cycles. We also give good bounds on chi'(s)(G) s when G contains both paths and cycles. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:17 / 29
页数:13
相关论文
共 9 条
[1]  
AIGNER M, 1992, COMBINATORICA, V90, P1
[2]  
BALISTER PN, IN PRESS PACKING CIR
[3]   On the vertex-distinguishing proper edge-colorings of graphs [J].
Bazgan, C ;
Harkat-Benhamdine, A ;
Li, H ;
Wozniak, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) :288-301
[4]  
Burris A.C., 1993, THESIS MEMPHIS STATE
[5]  
Cerny J., 1996, Math. Slovaca, V46, P21
[6]  
Harary F., 1985, GRAPHS APPL, P147
[7]  
Hornak M, 1997, DISCRETE MATH, V176, P139
[8]  
Hornak M, 1995, ARS COMBINATORIA, V41, P289
[9]  
SCHELP R. H., 1997, J GRAPH THEOR, V26, P70