COMPARISON OF GEOMETRIC AND ARITHMETIC MEANS FOR BANDWIDTH SELECTION IN NADARAYA-WATSON KERNEL REGRESSION ESTIMATOR

被引:0
作者
Xu, Li-Yuan [1 ]
Zhang, Min [1 ]
Zhu, Wei [1 ]
He, Yu-Lin [2 ]
机构
[1] Cangzhou Vocat Coll Technol, Dept Informat Engn, Cangzhou 061001, Hebei, Peoples R China
[2] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Hebei, Peoples R China
来源
PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4 | 2013年
关键词
Arithmetic mean; Geometric mean; Local linear kernel regression estimator; Adaptive Nadaraya-Watson kernel regression estimator; NONPARAMETRIC REGRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nadaraya-Watson kernel regression estimator (NWKRE) is a typical kernel regression estimator which is a kernel based and non-parametric regression method to estimate the conditional expectation of a random variable and the non-linear mapping from input to output. For NWKRE, the selection of bandwidth, i.e., smoothing parameter h, plays a very important role in the fitting performance. In order to enhance the performance of NVVKRE, an adaptive Nadaraya-Watson kernel regression estimator is proposed, ANWKRE for short. There are two main strategies to determine the adaptive or local bandwidth factor A: geometric mean and arithmetic mean based determination methods, respectively. In this paper, we firstly investigate the mathematical properties of geometric mean and arithmetic mean in the framework of regression analysis. Then, some experimental comparisons are conducted to demonstrate our theoretical results. The experimental results find that the arithmetic mean based ANWKRE can obtain a smoother regression estimation for unknown function.
引用
收藏
页码:999 / 1004
页数:6
相关论文
共 18 条
[1]  
[Anonymous], DENSITY ESTIMATION S
[2]  
[Anonymous], 1994, Kernel smoothing
[3]   Kernel regression estimation in a Banach space [J].
Dabo-Niang, Sophie ;
Rhomari, Noureddine .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) :1421-1434
[4]  
Demir S, 2010, HACET J MATH STAT, V39, P429
[5]  
Gasser T, 1979, Smoothing Techniques for Curve Estimations, V757, P23
[6]   Frontier estimation with kernel regression on high order moments [J].
Girard, Stephane ;
Guillou, Armelle ;
Stupfler, Gilles .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 :172-189
[7]   BOOTSTRAP SIMULTANEOUS ERROR BARS FOR NONPARAMETRIC REGRESSION [J].
HARDLE, W ;
MARRON, JS .
ANNALS OF STATISTICS, 1991, 19 (02) :778-796
[8]  
Hardle Wolfgang., 1994, APPL NONPARAMETRIC R
[9]  
HART JD, 1991, J ROY STAT SOC B MET, V53, P173
[10]   KERNEL REGRESSION ESTIMATION USING REPEATED MEASUREMENTS DATA [J].
HART, JD ;
WEHRLY, TE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (396) :1080-1088