The Solution of S exp (S) = A is Not Always the Lambert W Function of A

被引:0
作者
Corless, Robert M. [1 ]
Ding, Hui [1 ]
Higham, Nicholas J.
Jeffrey, David J. [1 ]
机构
[1] Univ Western Ontario, Ontario Res Ctr Comp Algebra, London, ON, Canada
来源
ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION | 2007年
关键词
Matrix function; Lambert W function; nonlinear matrix equation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the solutions of the matrix equation S exp(S) = A. Our motivation comes from the study of systems of delay differential equations y'(t) = Ay(t - 1), which occur in some models of practical interest, especially in mathematical biology. This paper concentrates on the distinction between evaluating a matrix function and solving a matrix equation. In particular, it shows that the matrix Lambert W function evaluated at the matrix A does not represent all possible solutions of S exp(S) = A. These results can easily be extended to more general matrix equations.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 14 条
  • [1] Bellman R., 1963, DIFFERENTIAL DIFFERE
  • [2] Approximating the logarithm of a matrix to specified accuracy
    Cheng, SH
    Higham, NJ
    Kenney, CS
    Laub, AJ
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) : 1112 - 1125
  • [3] Corless R. M., 2002, LECT NOTES COMPUT SC, V2385, P76, DOI DOI 10.1007/3-540-45470-510
  • [4] On the Lambert W function
    Corless, RM
    Gonnet, GH
    Hare, DEG
    Jeffrey, DJ
    Knuth, DE
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) : 329 - 359
  • [5] A Schur-Parlett algorithm for computing matrix functions
    Davies, PI
    Higham, NJ
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) : 464 - 485
  • [6] Gantmacher F R, 1959, THEORY MATRICES, VI
  • [7] Heffernan JM., 2006, MATH SCI, V31, P21
  • [8] Stable iterations for the matrix square root
    Higham, NJ
    [J]. NUMERICAL ALGORITHMS, 1997, 15 (02) : 227 - 242
  • [9] HIGHAM NJ, 2006, HDB LINEAR ALGEBRA
  • [10] Horn R.A., 1991, TOPICS MATRIX ANAL