Matrix Factorization Techniques for Analysis of Imaging Mass Spectrometry Data

被引:0
作者
Siy, Peter W. [1 ]
Moffitt, Richard A. [2 ,3 ]
Parry, R. Mitchell [2 ,3 ]
Chen, Yanfeng [4 ]
Liu, Ying [5 ]
Sullards, M. Cameron [4 ,5 ]
Merrill, Alfred H., Jr. [4 ,5 ,6 ]
Wang, May D. [1 ,2 ,3 ,6 ]
机构
[1] Georgia Tech, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Tech, Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA USA
[4] Georgia Tech, Sch Chem & Biochem, Atlanta, GA USA
[5] Georgia Tech, Sch Biol, Atlanta, GA USA
[6] Georgia Tech, Petit Inst Bioengn & Biosci, Atlanta, GA USA
来源
8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2 | 2008年
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Imaging Mass Spectrometry; Independent Component Analysis; Non-negative Matrix Factorization; Principle Component Analysis;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Imaging mass spectrometry is a method for understanding the molecular distribution in a two-dimensional sample. This method is effective for a wide range of molecules, but generates a large amount of data. It is difficult to extract important information from these large datasets manually and automated methods for discovering important spatial and spectral features are needed. Independent component analysis and non-negative matrix factorization are explained and explored as tools for identifying underlying factors in the data. These techniques are compared and contrasted with principle component analysis, the more standard analysis tool. Independent component analysis and non-negative matrix factorization are found to be more effective analysis methods. A mouse cerebellum dataset is used for testing.
引用
收藏
页码:875 / +
页数:2
相关论文
共 18 条
[1]   Imaging mass spectrometry: Principles and potentials [J].
Chaurand, P ;
Schwartz, SA ;
Reyzer, ML ;
Caprioli, RA .
TOXICOLOGIC PATHOLOGY, 2005, 33 (01) :92-101
[2]   Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease [J].
Chen, Yanfeng ;
Allegood, Jeremy ;
Liu, Ying ;
Wang, Elaine ;
Cachon-Gonzalez, Begona ;
Cox, Timothy M. ;
Merrill, Alfred H., Jr. ;
Sullards, M. Cameron .
ANALYTICAL CHEMISTRY, 2008, 80 (08) :2780-2788
[3]   Imaging mass spectrometry based exploration of biochemical tissue composition using peak intensity weighted PCA [J].
de Plas, Raf Van ;
De Moor', Bart ;
Waelkens, Etienne .
2007 IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP, 2007, :209-+
[4]   Inferential, robust non-negative matrix factorization analysis of microarray data [J].
Fogel, Paul ;
Young, S. Stanley ;
Hawkins, Douglas M. ;
Ledirac, Nathalie .
BIOINFORMATICS, 2007, 23 (01) :44-49
[5]   Improving molecular cancer class discovery through sparse non-negative matrix factorization [J].
Gao, Y ;
Church, G .
BIOINFORMATICS, 2005, 21 (21) :3970-3975
[6]  
GAVERT H, FASTICA PACKAGE MATL
[7]  
HOYER P, NMFPACK
[8]   A fast fixed-point algorithm for independent component analysis [J].
Hyvarinen, A ;
Oja, E .
NEURAL COMPUTATION, 1997, 9 (07) :1483-1492
[9]  
Hyvärinen A, 2001, INDEPENDENT COMPONENT ANALYSIS: PRINCIPLES AND PRACTICE, P71
[10]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791