Potential impacts of climate change on soil erosion vulnerability across the conterminous United States

被引:53
作者
Segura, Catalina [1 ]
Sun, G. [2 ]
McNulty, S. [2 ]
Zhang, Y. [3 ]
机构
[1] Oregon State Univ, Forestry Engn Resources & Management Dept, Corvallis, OR 97331 USA
[2] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, USDA, Raleigh, NC USA
[3] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
climate change; erosivity factor; extreme events; precipitation; Revised Universal Soil Loss Equation; soil erosion; LAST GLACIAL MAXIMUM; RAINFALL EROSIVITY; MODEL SIMULATION; SEDIMENT YIELD; COUPLED MODEL; RIVER-BASIN; LAND-USE; RUSLE; COVER; PRECIPITATION;
D O I
10.2489/jswc.69.2.171
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions predicted by three general circulation models for three emissions scenarios (A2, A1B, and B1) from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Then, we identify watersheds that are most vulnerable to future climate change in terms of soil erosion potential. We develop a novel approach to evaluate future trends of R magnitude and variance by incorporating both the rate of change with time as well as the level of agreement between climatic projections. Our results show that mean decadal R values would increase with time according to all nine climatic projections considered between 1970 and 2090. However, these trends vary widely spatially. In general, catchments in the northeastern and northwestern United States are characterized by strong increasing trends in R, while the trends in the midwestern and southwestern United States are either weak or inconsistent among the nine climatic projections considered. The northeastern and northwestern United States will likely experience a significant increase in annual variability of R (i.e., increase in extreme events). Conversely the variability of R is unlikely to change in large areas of the Midwest. At the watershed scale (8-digit Hydrologic Unit Code), the mean vulnerability to erosion scores vary between -0.12 and 0.35 with a mean of 0.04. The five hydrologic regions with the highest mean vulnerability to erosion are 5, 6, 2, 1, and 17, with values varying between 0.06 and 0.09. These regions occupy large areas of Ohio, Maryland, Indiana, Vermont, and Illinois, with mean erosion vulnerability score statewide above 0.08. Future watershed management aiming at reducing soil erosion should focus on areas with the highest soil erosion vulnerability identified by this study.
引用
收藏
页码:171 / 181
页数:11
相关论文
共 66 条
  • [1] The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform
    Abrams, M
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (05) : 847 - 859
  • [2] Amoldus H.M.J., 1977, FAO SOILS B, V34, P39
  • [3] Andrade O, 2010, INTERCIENCIA, V35, P348
  • [4] Soil erosion prediction using RUSLE for central Kenyan highland conditions
    Angima, SD
    Stott, DE
    O'Neill, MK
    Ong, CK
    Weesies, GA
    [J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2003, 97 (1-3) : 295 - 308
  • [5] [Anonymous], 1997, STATSGO SOIL CHARACT
  • [6] [Anonymous], 2001, CLIMATE CHANGE 2001
  • [7] Arnoldus H. M. J., 1980, Assessment of Erosion., P127
  • [8] Bollinne A., 1980, Assessment of Erosion., P111
  • [9] Rainfall erosivity in Central Chile
    Bonilla, Carlos A.
    Vidal, Karim L.
    [J]. JOURNAL OF HYDROLOGY, 2011, 410 (1-2) : 126 - 133
  • [10] Global assessment of human-induced soil degradation
    Bridges, EM
    Oldeman, LR
    [J]. ARID SOIL RESEARCH AND REHABILITATION, 1999, 13 (04): : 319 - 325