A Hierarchy of New Nonlinear Evolution Equations and Their Bi-Hamiltonian Structures

被引:9
作者
Geng Xian-Guo [1 ]
Wang Hui [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
VRIES EQUATION; HEAT PULSES; KORTEWEG; SOLIDS;
D O I
10.1088/0256-307X/31/7/070202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hierarchy of new nonlinear evolution equations associated with a 3 x 3 matrix spectral problem with four potentials is proposed, in which two typical members are a new coupled Burgers equation and a new coupled KdV equation. The bi-Hamiltonian structures for the hierarchy of nonlinear evolution equations are established by using the trace identity.
引用
收藏
页数:4
相关论文
共 20 条
[11]  
Matveev V.B., 1991, Darboux Transformations and Solitons
[12]   NONLINEAR PROPAGATION OF HEAT PULSES IN SOLIDS [J].
NARAYANAMURTI, V ;
VARMA, CM .
PHYSICAL REVIEW LETTERS, 1970, 25 (16) :1105-+
[13]  
Qu CZ, 2004, CHINESE PHYS LETT, V21, P2077, DOI 10.1088/0256-307X/21/11/002
[14]   A Variable-Coefficient Manakov Model and Its Explicit Solutions through the Generalized Dressing Method [J].
Su Ting ;
Dai Hui-Hui ;
Geng Xian-Guo .
CHINESE PHYSICS LETTERS, 2013, 30 (06)
[15]   ASYMPTOTIC THEORY OF SELF-TRAPPING OF HEAT PULSES IN SOLIDS [J].
TAPPERT, FD ;
VARMA, CM .
PHYSICAL REVIEW LETTERS, 1970, 25 (16) :1108-+
[16]  
TU GZ, 1989, J PHYS A-MATH GEN, V22, P2375, DOI 10.1088/0305-4470/22/13/031
[17]   Hybrid spline difference method for the Burgers' equation [J].
Wang, Chi-Chang ;
Liao, Wu-Jung ;
Hsu, Yin-Sung .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) :1031-1039
[18]   A novel hierarchy of differential-integral equations and their generalized bi-Hamiltonian structures [J].
Zhai Yun-Yun ;
Geng Xian-Guo ;
He Guo-Liang .
CHINESE PHYSICS B, 2014, 23 (06)
[19]   The partial derivative-Dressing Method for the Sasa-Satsuma Equation with Self-Consistent Sources [J].
Zhu Jun-Yi ;
Geng Xian-Guo .
CHINESE PHYSICS LETTERS, 2013, 30 (08)
[20]   The (2+1)-dimensional nonisospectral relativistic Toda hierarchy related to the generalized discrete Painleve hierarchy [J].
Zhu, Zuo-Nong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (27) :7707-7719