KP constraints from reduced multi-component hierarchies

被引:10
|
作者
Willox, R
Loris, I
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Free Univ Brussels, Dienst Theoret Nat Kunde, B-1050 Brussels, Belgium
关键词
D O I
10.1063/1.533104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The (m-vector) k-constrained Kadomtsev-Petviashvili (KP) hierarchy is shown to be a "pseudo"-reduction of the (m+1)-component KP hierarchy. To facilitate the implementation of this reduction on the level of the solutions, the typical multi-component KP solutions are mapped onto solutions of a Toda molecule-type equation from which (Wronskian and Grammian) solutions for the constrained KP hierarchy follow. The reduction of the associated linear systems is discussed and its importance for the choice of bilinear representation of the reduced systems is explained. (C) 1999 American Institute of Physics. [S0022-2488(99)01310-9].
引用
收藏
页码:6501 / 6525
页数:25
相关论文
共 50 条
  • [1] Polynomial Tau Functions of Symplectic KP and Multi-component Symplectic KP Hierarchies
    Huang, Fang
    Li, Chuanzhong
    ANNALS OF COMBINATORICS, 2022, 26 (03) : 593 - 611
  • [2] Polynomial Tau Functions of Symplectic KP and Multi-component Symplectic KP Hierarchies
    Fang Huang
    Chuanzhong Li
    Annals of Combinatorics, 2022, 26 : 593 - 611
  • [3] Symmetries of the multi-component supersymmetric (ABC)-type KP hierarchies
    Li, Chuanzhong
    Shi, Qingling
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
  • [4] On a reduction of the multi-component KP hierarchy
    Zhang, YJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (36): : 6461 - 6476
  • [5] VIRASORO SYMMETRY OF THE CONSTRAINED MULTI-COMPONENT Q-KP AND Q-MKP HIERARCHIES
    Qian, Chao
    Li, Chuanzhong
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (02) : 271 - 293
  • [6] From Component Reduced Models to Reduced Modelling of Multi-Component Systems
    Quaranta, Giacomo
    Ziane, Mustapha
    Masque Barri, Simo
    Terres Aboitiz, Carlos
    Chambard, Anne
    Duval, Jean Louis
    Cueto, Elias
    Chinesta, Francisco
    23RD INTERNATIONAL CONFERENCE ON MATERIAL FORMING, 2020, 47 : 696 - 701
  • [7] Multi-component super integrable Hamiltonian hierarchies
    Wang, Haifeng
    Zhang, Yufeng
    Li, Chuanzhong
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [8] Two New Multi-component BKP Hierarchies
    WU Hong-Xia
    CommunicationsinTheoreticalPhysics, 2009, 51 (02) : 193 - 199
  • [9] Multi-component hierarchies of double bracket equations
    Felipe, R
    REPORTS ON MATHEMATICAL PHYSICS, 2003, 52 (02) : 167 - 176
  • [10] Two New Multi-component BKP Hierarchies
    Wu Hong-Xia
    Liu Xiao-Jun
    Zeng Yun-Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (02) : 193 - 199