On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems

被引:11
|
作者
Balazsova, Monika [1 ]
Feistauer, Miloslav [1 ]
Hadrava, Martin [1 ]
Kosik, Adam [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
Nonlinear convection-diffusion problems; space-time discontinuous Galerkin method; space and time discretization; stability of the method; discrete characteristic function; FINITE-ELEMENT-METHOD; PARABOLIC PROBLEMS; APPROXIMATIONS;
D O I
10.1515/jnma-2015-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subject of this paper is the analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme, the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty are used. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method. An important tool is the concept of the discrete characteristic function. Theoretical results are accompanied by numerical experiments.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 50 条
  • [41] AN ADAPTIVE hp-DISCONTINUOUS GALERKIN APPROACH FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Dolejsi, Vit
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 72 - 82
  • [42] Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension
    Celiker, Fatih
    Cockburn, Bernardo
    MATHEMATICS OF COMPUTATION, 2006, 76 (257) : 67 - 96
  • [43] Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations
    Ahmadinia, M.
    Safari, Z.
    Fouladi, S.
    BIT NUMERICAL MATHEMATICS, 2018, 58 (03) : 533 - 554
  • [44] A Space-Time Discontinuous Galerkin Spectral Element Method for Nonlinear Hyperbolic Problems
    Pei, Chaoxu
    Sussman, Mark
    Hussaini, M. Yousuff
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2019, 16 (01)
  • [45] H 1 space-time discontinuous finite element method for convection-diffusion equations
    He, Siriguleng
    Li, Hong
    Liu, Yang
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (03) : 371 - 384
  • [46] STABILITY OF ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD
    Vlasak, Miloslav
    Balazsova, Monika
    Feistauer, Miloslav
    PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 237 - 246
  • [47] H~1 space-time discontinuous finite element method for convection-diffusion equations
    何斯日古楞
    李宏
    刘洋
    Applied Mathematics and Mechanics(English Edition), 2013, 34 (03) : 371 - 384
  • [48] Numerical Solution for a Nonlinear Time-Space Fractional Convection-Diffusion Equation
    Basha, Merfat
    Anley, Eyaya Fekadie
    Dai, Binxiang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (01):
  • [49] A staggered discontinuous Galerkin method for the convection-diffusion equation
    Chung, E.
    Lee, C. S.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (01) : 1 - 31
  • [50] DISCONTINUOUS GALERKIN METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Xu, Qinwu
    Hesthaven, Jan S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 405 - 423