Nonlinear convection-diffusion problems;
space-time discontinuous Galerkin method;
space and time discretization;
stability of the method;
discrete characteristic function;
FINITE-ELEMENT-METHOD;
PARABOLIC PROBLEMS;
APPROXIMATIONS;
D O I:
10.1515/jnma-2015-0014
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The subject of this paper is the analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme, the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty are used. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method. An important tool is the concept of the discrete characteristic function. Theoretical results are accompanied by numerical experiments.
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Bank, Randolph E.
Vassilevski, Panayot S.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, POB 808,Mail Stop L-561, Livermore, CA 94551 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Vassilevski, Panayot S.
Zikatanov, Ludmil T.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USA
Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, BulgariaUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA