Nonlinear convection-diffusion problems;
space-time discontinuous Galerkin method;
space and time discretization;
stability of the method;
discrete characteristic function;
FINITE-ELEMENT-METHOD;
PARABOLIC PROBLEMS;
APPROXIMATIONS;
D O I:
10.1515/jnma-2015-0014
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The subject of this paper is the analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme, the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty are used. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method. An important tool is the concept of the discrete characteristic function. Theoretical results are accompanied by numerical experiments.
机构:
Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R ChinaBeijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R China
Cao, Waixiang
Liu, Hailiang
论文数: 0引用数: 0
h-index: 0
机构:
Iowa State Univ, Dept Math, Ames, IA 50011 USABeijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R China
Liu, Hailiang
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R China
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510000, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510000, Guangdong, Peoples R China
Leng, Haitao
Chen, Yanping
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510000, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510000, Guangdong, Peoples R China