On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems

被引:11
|
作者
Balazsova, Monika [1 ]
Feistauer, Miloslav [1 ]
Hadrava, Martin [1 ]
Kosik, Adam [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
Nonlinear convection-diffusion problems; space-time discontinuous Galerkin method; space and time discretization; stability of the method; discrete characteristic function; FINITE-ELEMENT-METHOD; PARABOLIC PROBLEMS; APPROXIMATIONS;
D O I
10.1515/jnma-2015-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subject of this paper is the analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme, the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty are used. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method. An important tool is the concept of the discrete characteristic function. Theoretical results are accompanied by numerical experiments.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 50 条
  • [21] Numerical Diffusion Control of a Space-Time Discontinuous Galerkin Method
    Borrel, Michel
    Ryan, Juliette
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 5 (2-4) : 469 - 483
  • [22] ON THE UNIFORM STABILITY OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 84 - 92
  • [23] Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems
    Miloslav Feistauer
    Jaroslav Hájek
    Karel Švadlenka
    Applications of Mathematics, 2007, 52 : 197 - 233
  • [24] Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems
    Feistauer, Miloslav
    Hajek, Jaroslav
    Svadlenka, Karel
    APPLICATIONS OF MATHEMATICS, 2007, 52 (03) : 197 - 233
  • [25] The Discontinuous Galerkin Method for Convection-Diffusion Problems in Time-Dependent Domains
    Kucera, Vaclav
    Feistauer, Miloslav
    Prokopova, Jaroslava
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 551 - 559
  • [26] A Discontinuous Galerkin Method by Patch Reconstruction for Convection-Diffusion Problems
    Sun, Zhiyuan
    Liu, Jun
    Wang, Pei
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (03) : 729 - 747
  • [27] Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems
    Buffa, A.
    Hughes, T. J. R.
    Sangalli, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1420 - 1440
  • [28] A robust discontinuous Galerkin method for solving convection-diffusion problems
    Zhang, Zuo-zheng
    Xie, Zi-qing
    Tao, Xia
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (03): : 483 - 496
  • [29] A Robust Discontinuous Galerkin Method for Solving Convection-diffusion Problems
    Zuo-zheng Zhang Zi-qing Xie~* Xia Tao College of Mathematics and Computer Science
    Acta Mathematicae Applicatae Sinica, 2008, (03) : 483 - 496
  • [30] A robust discontinuous Galerkin method for solving convection-diffusion problems
    Zuo-zheng Zhang
    Zi-qing Xie
    Xia Tao
    Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 483 - 496