On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems

被引:11
|
作者
Balazsova, Monika [1 ]
Feistauer, Miloslav [1 ]
Hadrava, Martin [1 ]
Kosik, Adam [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
Nonlinear convection-diffusion problems; space-time discontinuous Galerkin method; space and time discretization; stability of the method; discrete characteristic function; FINITE-ELEMENT-METHOD; PARABOLIC PROBLEMS; APPROXIMATIONS;
D O I
10.1515/jnma-2015-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subject of this paper is the analysis of the space-time discontinuous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion problems. In the formulation of the numerical scheme, the nonsymmetric, symmetric and incomplete versions of the discretization of diffusion terms and interior and boundary penalty are used. Then error estimates are briefly characterized. The main attention is paid to the investigation of unconditional stability of the method. An important tool is the concept of the discrete characteristic function. Theoretical results are accompanied by numerical experiments.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 50 条
  • [1] STABILITY ANALYSIS OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Balazsova, Monika
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    Programs and Algorithms of Numerical Mathematics 17, 2015, : 9 - 16
  • [2] Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems
    Feistauer, Miloslav
    Kucera, Vaclav
    Najzar, Karel
    Prokopova, Jaroslava
    NUMERISCHE MATHEMATIK, 2011, 117 (02) : 251 - 288
  • [3] THEORY OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY PARABOLIC PROBLEMS WITH NONLINEAR CONVECTION AND DIFFUSION
    Cesenek, Jan
    Feistauer, Miloslav
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1181 - 1206
  • [4] STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    Vlasak, Miloslav
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 52 (06): : 2327 - 2356
  • [5] On the stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
    Monika Balázsová
    Miloslav Feistauer
    Applications of Mathematics, 2015, 60 : 501 - 526
  • [6] ON THE STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    APPLICATIONS OF MATHEMATICS, 2015, 60 (05) : 501 - 526
  • [7] Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems
    Dolejsí, V
    Feistauer, M
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2005, 26 (03) : 349 - 383
  • [8] A Priori Error Estimates of an Extrapolated Space-Time Discontinuous Galerkin Method for Nonlinear Convection-Diffusion Problems
    Vlasak, M.
    Dolejsi, V.
    Hajek, J.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1456 - 1482
  • [9] Space-Time DG Method for Nonstationary Convection-Diffusion Problems
    Feistauer, Miloslav
    Kucera, Vaclav
    Najzar, Karel
    Prokopova, Jaroslava
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 325 - 333
  • [10] DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY NONLINEAR CONVECTION-DIFFUSION PROBLEMS: A PRIORI ERROR ESTIMATES
    Hozman, Jiri
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 294 - 303