Topological quantum codes on compact surfaces with genus g≥2

被引:25
作者
Albuquerque, C. D. [1 ]
Palazzo, R., Jr. [1 ]
Silva, E. B. [2 ]
机构
[1] Univ Estadual Campinas, Fac Engn Eletr & Comp, Dept Telemat, BR-13083970 Campinas, SP, Brazil
[2] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
基金
巴西圣保罗研究基金会;
关键词
error correction codes; graph theory; quantum computing; topology; ERROR-CORRECTING CODES; MEMORY;
D O I
10.1063/1.3081056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we propose a construction procedure of a class of topological quantum error-correcting codes on surfaces with genus g >= 2. This generalizes the toric codes construction. We also tabulate all possible surface codes with genus 2-5. In particular, this construction reproduces the class of codes obtained when considering the embedding of complete graphs K(s), for s equivalent to 1 mod 4, on surfaces with appropriate genus. We also show a table comparing the rate of different codes when fixing the distance to 3-5.
引用
收藏
页数:20
相关论文
共 18 条
[11]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[12]  
Katok S., 1992, Fuchsian Groups
[13]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[14]  
Nilsen M. A., 2000, QUANTUM COMPUTATION
[15]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[16]  
SHOR PW, P 35 ANN S FDN UNPUB, P124
[17]  
Silva E.B., 2006, J FRANKLIN I, V343, P69
[18]   Error correcting codes in quantum theory [J].
Steane, AM .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :793-797