Topological quantum codes on compact surfaces with genus g≥2

被引:25
作者
Albuquerque, C. D. [1 ]
Palazzo, R., Jr. [1 ]
Silva, E. B. [2 ]
机构
[1] Univ Estadual Campinas, Fac Engn Eletr & Comp, Dept Telemat, BR-13083970 Campinas, SP, Brazil
[2] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
基金
巴西圣保罗研究基金会;
关键词
error correction codes; graph theory; quantum computing; topology; ERROR-CORRECTING CODES; MEMORY;
D O I
10.1063/1.3081056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we propose a construction procedure of a class of topological quantum error-correcting codes on surfaces with genus g >= 2. This generalizes the toric codes construction. We also tabulate all possible surface codes with genus 2-5. In particular, this construction reproduces the class of codes obtained when considering the embedding of complete graphs K(s), for s equivalent to 1 mod 4, on surfaces with appropriate genus. We also show a table comparing the rate of different codes when fixing the distance to 3-5.
引用
收藏
页数:20
相关论文
共 18 条
[1]  
[Anonymous], 2000, GEOMETRY SURFACES
[2]  
[Anonymous], 1983, GEOMETRY DISCRETE GR
[3]  
ARTIN E, 1969, INTRO ALGEBRAIC TOPO
[4]   Homological error correction: Classical and quantum codes [J].
Bombin, H. ;
Martin-Delgado, M. A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
[5]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[6]  
Cavalcante RG, 2005, DIMACS SER DISCRET M, V68, P145
[7]  
DEALBUQUERQUE CD, 2008, P INF THEOR WO UNPUB, P391
[8]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505
[9]   REGULAR TESSELLATIONS OF SURFACES AND (P, Q, 2)-TRIANGLE GROUPS [J].
EDMONDS, AL ;
EWING, JH ;
KULKARNI, RS .
ANNALS OF MATHEMATICS, 1982, 116 (01) :113-132
[10]  
Firby PA, 1991, Ellis Horwood series in mathematics and its applications