Global stability of an age-structured sirs epidemic model with vaccination

被引:8
作者
Li, XZ [1 ]
Gupur, G
机构
[1] Xinyang Teachers Coll, Dept Math, Henan 464000, Peoples R China
[2] Xinjiang Univ, Dept Math, Urumqi 830046, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2004年 / 4卷 / 03期
关键词
age-structured SIRS epidemic model; vaccination; reproductive number; infection-free steady state; endemic state; global stability;
D O I
10.3934/dcdsb.2004.4.643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the study of an age-structured SIRS epidemic model with a vaccination program. We first give the explicit expression of the reproductive number R(psi) in the presence of vaccine, and show that the infection-free steady state is locally asymptotically stable if R(psi) < 1 and unstable if R(psi) > 1. Second, we prove that the infection-free state is globally stable if the basic reproductive number R-0 < 1, and that an endemic equilibrium exists when the reproductive number R(psi) > 1.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 14 条
[1]   Global stability of an age-structure model for TB and its applications to optimal vaccination strategies [J].
Castillo-Chavez, C ;
Feng, ZL .
MATHEMATICAL BIOSCIENCES, 1998, 151 (02) :135-154
[2]   To treat or not to treat: The case of tuberculosis [J].
CastilloChavez, C ;
Feng, ZL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (06) :629-656
[3]   Existence and uniqueness of endemic states for the age-structured S-I-R epidemic model [J].
Cha, Y ;
Iannelli, M ;
Milner, FA .
MATHEMATICAL BIOSCIENCES, 1998, 150 (02) :177-190
[4]  
GREENHALGH D, 1987, IMA J MATH APPL MED, V4, P109
[6]  
Gripenberg G., 1990, Volterra Integral and Functional Equations, V34
[7]  
Hadeler KP, 1993, MODELS INFECT HUMAN, P90
[8]  
HADELER KP, 1993, VACCINATION AGE STRU, V2, P102
[9]  
INABA H, 1990, J MATH BIOL, V28, P149
[10]  
Muller J, 1998, SIAM J APPL MATH, V59, P222