Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron-mediated oxidative stress in bean

被引:54
作者
Pekker, I
Tel-Or, E
Mittler, R
机构
[1] Technion Israel Inst Technol, Dept Biol, IL-32000 Haifa, Israel
[2] Hebrew Univ Jerusalem, Fac Agr, Dept Bot, IL-76100 Rehovot, Israel
关键词
ascorbate peroxidase; glutathione; iron; oxidative stress; reactive oxygen intermediates;
D O I
10.1023/A:1015554616358
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Excess of free iron is thought to harm plant cells by enhancing the intracellular production of reactive oxygen intermediates (ROI). Cytosolic ascorbate peroxidase (cAPX) is an iron-containing, ROI-detoxifying enzyme induced in response to iron overload or oxidative stress. We studied the expression of cAPX in leaves of de-rooted bean plants in response to iron overload. cAPX expression, i.e., mRNA and protein, was rapidly induced in response to iron overload. This induction correlated with the increase in iron content in leaves and occurred in the light as well as in the dark. Reduced glutathione (GSH), which plays an important role in activating the ROI signal transduction pathway as well as in ROI detoxification, was found to enhance the induction of APX mRNA by iron. To determine whether cAPX induction during iron overload was due to an increase in the amount of free iron, which serves as a co-factor for cAPX synthesis, or due to iron-mediated increase in ROI production, we tested the expression of APX in leaves under low oxygen pressure. This treatment, which suppresses the formation of ROI, completely abolished the induction of cAPX mRNA during iron overload, without affecting the rate of iron uptake by plants. Taken together, our results suggest that high intracellular levels of free iron in plants lead to the enhanced production of ROI, which in turn induces the expression of cAPX, possibly using GSH as an intermediate signal. We further show, using cAPX-antisense transgenic plants, that cAPX expression is essential to prevent iron-mediated tissue damage in tobacco.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 41 条
[1]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[2]   ASCORBATE PEROXIDASE - A HYDROGEN PEROXIDE-SCAVENGING ENZYME IN PLANTS [J].
ASADA, K .
PHYSIOLOGIA PLANTARUM, 1992, 85 (02) :235-241
[3]  
BALLA G, 1992, J BIOL CHEM, V267, P18148
[4]   BIOCHEMISTRY OF OXYGEN-TOXICITY [J].
CADENAS, E .
ANNUAL REVIEW OF BIOCHEMISTRY, 1989, 58 :79-110
[5]   Prolonged hypoxia during cell development protects mature manganese superoxide dismutase-deficient astrocytes from damage by oxidative stress [J].
Copin, JC ;
Gasche, Y ;
Li, YB ;
Chan, PH .
FASEB JOURNAL, 2001, 15 (02) :525-534
[6]   Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress [J].
Creissen, G ;
Firmin, J ;
Fryer, M ;
Kular, B ;
Leyland, N ;
Reynolds, H ;
Pastori, G ;
Wellburn, F ;
Baker, N ;
Wellburn, A ;
Mullineaux, P .
PLANT CELL, 1999, 11 (07) :1277-1291
[7]   METABOLISM OF OXYGEN RADICALS IN PEROXISOMES AND CELLULAR IMPLICATIONS [J].
DELRIO, LA ;
SANDALIO, LM ;
PALMA, JM ;
BUENO, P ;
CORPAS, FJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1992, 13 (05) :557-580
[8]   A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J].
Eide, D ;
Broderius, M ;
Fett, J ;
Guerinot, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5624-5628
[9]   Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling [J].
Foyer, CH ;
LopezDelgado, H ;
Dat, JF ;
Scott, IM .
PHYSIOLOGIA PLANTARUM, 1997, 100 (02) :241-254
[10]   OVEREXPRESSION OF GLUTATHIONE-REDUCTASE BUT NOT GLUTATHIONE SYNTHETASE LEADS TO INCREASES IN ANTIOXIDANT CAPACITY AND RESISTANCE TO PHOTOINHIBITION IN POPLAR TREES [J].
FOYER, CH ;
SOURIAU, N ;
PERRET, S ;
LELANDAIS, M ;
KUNERT, KJ ;
PRUVOST, C ;
JOUANIN, L .
PLANT PHYSIOLOGY, 1995, 109 (03) :1047-1057