Differential calculi and linear connections

被引:40
作者
Dimakis, A [1 ]
Madore, J [1 ]
机构
[1] UNIV PARIS 11,PHYS THEOR & HAUTES ENERGIES LAB,F-91405 ORSAY,FRANCE
关键词
D O I
10.1063/1.531645
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method is proposed for defining an arbitrary number of differential calculi over a given noncommutative associative algebra. As an example the generalized quantum plane is studied. It is found that there is a strong correlation, but not a one-to-one correspondence, between the module structure of the 1-forms and the metric torsion-free connections on it. In the commutative limit the connection remains as a shadow of the algebraic structure of the 1-forms. (C) 1996 American Institute of Physics.
引用
收藏
页码:4647 / 4661
页数:15
相关论文
共 22 条
  • [1] [Anonymous], 1960, LECT FIBRE BUNDLES D
  • [2] DIFFERENTIAL CALCULI ON COMMUTATIVE ALGEBRAS
    BAEHR, HC
    DIMAKIS, A
    MULLERHOISSEN, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11): : 3197 - 3222
  • [3] BRESSER K, 1995, 9595 GOETTP
  • [4] Connes A., 1994, NONCOMMUTATIVE GEOME
  • [5] CONNES A, 1986, PUBL MATH IHES, V62, P257
  • [6] ALGEBRA EXTENSIONS AND NONSINGULARITY
    CUNTZ, JC
    QUILLEN, D
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) : 251 - 289
  • [7] Non-commutative geometry and kinetic theory of open systems
    Dimakis, A
    Tzanakis, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (03): : 577 - 594
  • [8] DIMAKIS A, 1992, 3392 GOETP
  • [9] GAUGE BOSONS IN A NONCOMMUTATIVE GEOMETRY
    DUBOISVIOLETTE, M
    MADORE, J
    KERNER, R
    [J]. PHYSICS LETTERS B, 1989, 217 (04) : 485 - 488
  • [10] CLASSICAL BOSONS IN A NON-COMMUTATIVE GEOMETRY
    DUBOISVIOLETTE, M
    KERNER, R
    MADORE, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) : 1709 - 1724