Retrieving Surface Soil Moisture over Wheat and Soybean Fields during Growing Season Using Modified Water Cloud Model from Radarsat-2 SAR Data

被引:37
作者
Xing, Minfeng [1 ,2 ,3 ,4 ]
He, Binbin [1 ,2 ]
Ni, Xiliang [3 ]
Wang, Jinfei [4 ]
An, Gangqiang [1 ]
Shang, Jiali [5 ]
Huang, Xiaodong [6 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Informat & Geosci, Chengdu 611731, Sichuan, Peoples R China
[3] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[4] Univ Western Ontario, Dept Geog, London, ON N6A 5C2, Canada
[5] Agr & Agri Food Canada, Ottawa Res & Dev Ctr, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
[6] Appl Geosolut, 15 Newmarket Rd, Durham, NH 03824 USA
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
surface soil moisture; modified Water Cloud Model; Dubois model; SAR backscattering; SYNTHETIC-APERTURE RADAR; OPTICAL TRAPEZOID MODEL; LEAF-AREA INDEX; EMPIRICAL-MODEL; VEGETATION; BACKSCATTER; ROUGHNESS; PARAMETERIZATION; VALIDATION; ASAR;
D O I
10.3390/rs11161956
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Surface soil moisture (SSM) retrieval over agricultural fields using synthetic aperture radar (SAR) data is often obstructed by the vegetation effects on the backscattering during the growing season. This paper reports the retrieval of SSM from RADARSAT-2 SAR data that were acquired over wheat and soybean fields throughout the 2015 (April to October) growing season. The developed SSM retrieval algorithm includes a vegetation-effect correction. A method that can adequately represent the scattering behavior of vegetation-covered area was developed by defining the backscattering from vegetation and the underlying soil individually to remove the effect of vegetation on the total SAR backscattering. The Dubois model was employed to describe the backscattering from the underlying soil. A modified Water Cloud Model (MWCM) was used to remove the effect of backscattering that is caused by vegetation canopy. SSM was derived from an inversion scheme while using the dual co-polarizations (HH and VV) from the quad polarization RADARSAT-2 SAR data. Validation against ground measurements showed a high correlation between the measured and estimated SSM (R-2 = 0.71, RMSE = 4.43 vol.%, p < 0.01), which suggested an operational potential of RADARSAT-2 SAR data on SSM estimation over wheat and soybean fields during the growing season.
引用
收藏
页数:22
相关论文
共 65 条
[11]   Parameterization of vegetation backscatter in radar-based, soil moisture estimation [J].
Bindlish, R ;
Barros, AP .
REMOTE SENSING OF ENVIRONMENT, 2001, 76 (01) :130-137
[12]   Multifrequency soil moisture inversion from SAR measurements with the use of IEM [J].
Bindlish, R ;
Barros, AP .
REMOTE SENSING OF ENVIRONMENT, 2000, 71 (01) :67-88
[13]   Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture [J].
Bryant, R. ;
Moran, M. S. ;
Thoma, D. P. ;
Collins, C. D. Holifield ;
Skirvin, S. ;
Rahman, M. ;
Slocum, K. ;
Starks, P. ;
Bosch, D. ;
Gonzalez Dugo, M. P. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (01) :137-141
[14]   Parameterization of tillage-induced single-scale soil roughness from 4-m profiles [J].
Callens, M ;
Verhoest, NEC ;
Davidson, MWJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (04) :878-888
[15]   Validation of SMAP surface soil moisture products with core validation sites [J].
Colliander, A. ;
Jackson, T. J. ;
Bindlish, R. ;
Chan, S. ;
Das, N. ;
Kim, S. B. ;
Cosh, M. H. ;
Dunbar, R. S. ;
Dang, L. ;
Pashaian, L. ;
Asanuma, J. ;
Aida, K. ;
Berg, A. ;
Rowlandson, T. ;
Bosch, D. ;
Caldwell, T. ;
Caylor, K. ;
Goodrich, D. ;
al Jassar, H. ;
Lopez-Baeza, E. ;
Martinez-Fernandez, J. ;
Gonzalez-Zamora, A. ;
Livingston, S. ;
McNairn, H. ;
Pacheco, A. ;
Moghaddam, M. ;
Montzka, C. ;
Notarnicola, C. ;
Niedrist, G. ;
Pellarin, T. ;
Prueger, J. ;
Pulliainen, J. ;
Rautiainen, K. ;
Ramos, J. ;
Seyfried, M. ;
Starks, P. ;
Su, Z. ;
Zeng, Y. ;
van der Velde, R. ;
Thibeault, M. ;
Dorigo, W. ;
Vreugdenhil, M. ;
Walker, J. P. ;
Wu, X. ;
Monerris, A. ;
O'Neill, P. E. ;
Entekhabi, D. ;
Njoku, E. G. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 191 :215-231
[16]   Assessment of SAR-retrieved soil moisture uncertainty induced by uncertainty on modeled soil surface roughness [J].
De Keyser, E. ;
Vernieuwe, H. ;
Lievens, H. ;
Alvarez-Mozos, J. ;
De Baets, B. ;
Verhoest, N. E. C. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 18 :176-182
[17]   Polarimetric Two-Scale Two-Component Model for the Retrieval of Soil Moisture Under Moderate Vegetation via L-Band SAR Data [J].
Di Martino, Gerardo ;
Iodice, Antonio ;
Natale, Antonio ;
Riccio, Daniele .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04) :2470-2491
[18]   MICROWAVE DIELECTRIC BEHAVIOR OF WET SOIL .2. DIELECTRIC MIXING MODELS [J].
DOBSON, MC ;
ULABY, FT ;
HALLIKAINEN, MT ;
ELRAYES, MA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (01) :35-46
[19]   A REEXAMINATION OF SOIL TEXTURAL EFFECTS ON MICROWAVE EMISSION AND BACKSCATTERING [J].
DOBSON, MC ;
KOUYATE, F ;
ULABY, FT .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1984, 22 (06) :530-536
[20]   MEASURING SOIL-MOISTURE WITH IMAGING RADARS [J].
DUBOIS, PC ;
VANZYL, J ;
ENGMAN, T .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (04) :915-926