The terminal-pairability problem in complete bipartite graphs

被引:0
作者
Lv, Zequn [1 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Terminal-pairability; Demand graph; Bipartite graph;
D O I
10.1016/j.dam.2020.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the terminal-pairability problem in the case that the base graph is a complete bipartite graph, and the demand graph is a bipartite graph on the same vertex set and using copies of edges of the base graph as demand edges. In 1998, Gyarfas and Schelp raised a question that if the maximum degree of the demand graph Delta(D) <= Inverted right perpendicularn/3Inverted left perpendicular holds, then whether D is terminal-pairable in K-n,K-n? We partially answer the question. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 15 条
[1]   Terminal-pairability in complete bipartite graphs [J].
Colucci, Lucas ;
Erdos, Peter L. ;
Gyori, Ervin ;
Mezei, Tarnas Robert .
DISCRETE APPLIED MATHEMATICS, 2018, 236 :459-463
[2]   NETWORKS COMMUNICATING FOR EACH PAIRING OF TERMINALS [J].
CSABA, L ;
FAUDREE, RJ ;
GYARFAS, A ;
LEHEL, J ;
SCHELP, RH .
NETWORKS, 1992, 22 (07) :615-626
[3]  
Even S., 1976, SIAM Journal on Computing, V5, P691, DOI 10.1137/0205048
[4]  
FAUDREE R., 1992, Congressus Numerantium, V88, P111
[5]  
FAUDREE R.J., 1992, New Zealand Journal of Mathematics, V21, P91
[6]  
FAUDREE R.J., 1999, Journal of Combinatorial Mathematics and Combinatorial Computing, V20, P145
[7]   THE LIST CHROMATIC INDEX OF A BIPARTITE MULTIGRAPH [J].
GALVIN, F .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) :153-158
[8]   A communication problem and directed triple systems [J].
Gyarfas, A ;
Schelp, RH .
DISCRETE APPLIED MATHEMATICS, 1998, 85 (02) :139-147
[9]  
Gyori E., 2018, J COMBIN MATH COMBIN, V107, P221
[10]   Note on terminal-pairability in complete grid graphs [J].
Gyori, Ervin ;
Mezei, Tumas Robert ;
Meszaros, Gabor .
DISCRETE MATHEMATICS, 2017, 340 (05) :988-990