Partial regularity of minimizers of p(x)-growth functionals with p(x) > 1

被引:3
作者
Nio, Erika [1 ]
Usuba, Kunihiro [1 ]
机构
[1] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
关键词
Variational integral; Minimizer; Non-standard growth; Variable exponent; Lower order term; GENERAL GROWTH-CONDITIONS; NON-STANDARD GROWTH; BOUNDARY-REGULARITY; P(X)-ENERGY FUNCTIONALS; QUADRATIC FUNCTIONALS; VARIATIONAL INTEGRALS; ELLIPTIC-EQUATIONS; HOLDER CONTINUITY; MINIMA; MAPS;
D O I
10.1016/j.na.2017.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove partial regularity of minimizers u for functionals of the following type A(u) = integral(ohm)[(Alpha(alpha beta)(ij)(x,u,)D(alpha)u(i) D(beta)u(j))(p(x)/2) + g(x,u,Du)] dx, assuming that Alpha(alpha beta)(ij)(x, u) and p(x) are sufficiently smooth and that p(x) > 1. We prove that u is an element of C-0,C-alpha(ohm(0)) for some alpha is an element of (0,1) and an open set ohm(0) C ohm with Eta(m-n)(ohm - ohm(0)) = 0, where Eta(s) denotes the s -dimensional Hausdorff measure and gamma(1) = inf ohm p(x). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 50 条
  • [31] Regularity results for Hölder minimizers to functionals with non-standard growth
    Grimaldi, Antonio Giuseppe
    Ipocoana, Erica
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3143 - 3164
  • [32] Sharp regularity for functionals with (p, q) growth
    Esposito, L
    Leonetti, F
    Mingione, G
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (01) : 5 - 55
  • [33] Existence and regularity of minimizers of nonconvex integrals with p-q growth
    Celada, Pietro
    Cupini, Giovanni
    Guidorzi, Marcello
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (02): : 343 - 358
  • [34] Partial regularity of minimizers for double phase functionals with variable exponents
    Tachikawa, Atsushi
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):
  • [35] Partial regularity of minimizers for double phase functionals with variable exponents
    Atsushi Tachikawa
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [36] Partial regularity of minimizers of asymptotically convex functionals with Morrey coefficients
    Goodrich, Christopher S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (02)
  • [37] Regularity for minimizers of functionals with variable growth and discontinuous coefficients
    Zhang, Xia
    Huo, Yan
    Fu, Yongqiang
    [J]. ANNALES POLONICI MATHEMATICI, 2014, 110 (02) : 171 - 187
  • [38] LOCAL BOUNDEDNESS OF MINIMIZERS OF INTEGRAL FUNCTIONALS WITH (p, q)-GROWTH ON METRIC SPACES
    Maasalo, Outi Elina
    Stroffolini, Bianca
    Verde, Anna
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (01) : 127 - 138
  • [39] Boundary regularity results for minimisers of convex functionals with (p, q)-growth
    Irving, Christopher
    Koch, Lukas
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [40] Boundary regularity for elliptic systems with p, q-growth
    Boegelein, Verena
    Duzaar, Frank
    Marcellini, Paolo
    Scheven, Christoph
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 159 : 250 - 293