Partial regularity of minimizers of p(x)-growth functionals with p(x) > 1

被引:3
作者
Nio, Erika [1 ]
Usuba, Kunihiro [1 ]
机构
[1] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
关键词
Variational integral; Minimizer; Non-standard growth; Variable exponent; Lower order term; GENERAL GROWTH-CONDITIONS; NON-STANDARD GROWTH; BOUNDARY-REGULARITY; P(X)-ENERGY FUNCTIONALS; QUADRATIC FUNCTIONALS; VARIATIONAL INTEGRALS; ELLIPTIC-EQUATIONS; HOLDER CONTINUITY; MINIMA; MAPS;
D O I
10.1016/j.na.2017.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove partial regularity of minimizers u for functionals of the following type A(u) = integral(ohm)[(Alpha(alpha beta)(ij)(x,u,)D(alpha)u(i) D(beta)u(j))(p(x)/2) + g(x,u,Du)] dx, assuming that Alpha(alpha beta)(ij)(x, u) and p(x) are sufficiently smooth and that p(x) > 1. We prove that u is an element of C-0,C-alpha(ohm(0)) for some alpha is an element of (0,1) and an open set ohm(0) C ohm with Eta(m-n)(ohm - ohm(0)) = 0, where Eta(s) denotes the s -dimensional Hausdorff measure and gamma(1) = inf ohm p(x). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 50 条
[21]   Regularity for minimizers of functionals with nonstandard growth by A-harmonic approximation [J].
Habermann, Jens ;
Zatorska-Goldstein, Anna .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2) :169-194
[23]   Partial regularity of strong local minimizers of quasiconvex integrals with (p, q)-growth [J].
Schemm, Sabine ;
Schmidt, Thomas .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :595-621
[24]   Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth [J].
Eleuteri, Michela ;
di Napoli, Antonia Passarelli .
POTENTIAL ANALYSIS, 2025, 62 (03) :535-562
[25]   Regularity of minimizers of vectorial integrals with p-q growth [J].
Cupini, G ;
Guidorzi, M ;
Mascolo, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :591-616
[26]   Holder regularity for the gradients of solutions of the strong p(x)-Laplacian [J].
Zhang, Chao ;
Zhou, Shulin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) :1066-1077
[27]   Regularity of ω-minimizers for a class of functionals with non-standard growth [J].
Ok, Jihoon .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[28]   Partial regularity of solutions to p(x)-Laplacian PDEs with discontinuous coefficients [J].
Goodrich, Christopher S. ;
Ragusa, M. Alessandra ;
Scapellato, Andrea .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) :5440-5468
[29]   W01,p(x) Versus C1 Local Minimizers for Nonsmooth Functionals [J].
Che, Chengfu ;
Ge, Bin ;
Xue, Xiao-Ping ;
Zhou, Qing-Mei .
MATHEMATICAL MODELLING AND ANALYSIS, 2012, 17 (03) :396-402
[30]   Regularity for minimizers of functionals with nonstandard growth by A-harmonic approximation [J].
Jens Habermann ;
Anna Zatorska–Goldstein .
Nonlinear Differential Equations and Applications NoDEA, 2008, 15 :169-194