A microfluidic approach for the synthesis and assembly of multi-scale porous membranes

被引:7
作者
Li, Minggan [1 ]
Humayun, Mouhita [1 ]
Hughes, Bethany [1 ]
Kozinski, Janusz A. [2 ]
Hwang, Dae Kun [1 ]
机构
[1] Ryerson Univ, Dept Chem Engn, Toronto, ON M5B 2K3, Canada
[2] York Univ, Lassonde Sch Engn, N York, ON M3J 1P3, Canada
来源
RSC ADVANCES | 2015年 / 5卷 / 121期
基金
加拿大自然科学与工程研究理事会;
关键词
MACROPOROUS COPOLYMER PARTICLES; FABRICATION; CELL; PERFORMANCE; DEVICES; MICROSTRUCTURES; LITHOGRAPHY; MECHANISMS; MICROARRAY; MORPHOLOGY;
D O I
10.1039/c5ra21200f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A microfluidic approach is used to synthesize porous membranes with various advanced features such as multiscale pores, heterogeneous chemistry and customizable geometries. In the synthesizing process, while photomasks define microscale regular pores, polymerization-induced phase-separation forms nanoscale irregular pores. Thus, this combination offers the ability to generate multiscale pores on a membrane in a single step. The resulting membranes exhibit heterogeneous chemical properties by co-flowing prepolymer solutions with different chemical components and have designed geometries defined by photomasks. Furthermore, complex layered structures with chemical and physical anisotropies in the cross-membrane direction can be fabricated through magnet assisted self-assembly by encapsulating magnetic particles into the membranes.
引用
收藏
页码:100024 / 100029
页数:6
相关论文
共 43 条
[1]   Patterned paper as a template for the delivery of reactants in the fabrication of planar materials [J].
Bracher, Paul J. ;
Gupta, Malancha ;
Whitesides, George M. .
SOFT MATTER, 2010, 6 (18) :4303-4309
[2]   Heterogeneous Films of Ionotropic Hydrogels Fabricated from Delivery Templates of Patterned Paper [J].
Bracher, Paul J. ;
Gupta, Malancha ;
Mack, Eric T. ;
Whitesides, George M. .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (08) :1807-1812
[3]  
Chen F.-C. M., 1992, Whole blood assays using porous membrane support devices, Patent No. [US 5096809 A, 5096809]
[4]   Modeling of Oxygen-Inhibited Free Radical Photopolymerization in a PDMS Microfluidic Device [J].
Dendukuri, Dhananjay ;
Panda, Priyadarshi ;
Haghgooie, Ramin ;
Kim, Ju Min ;
Hatton, T. Alan ;
Doyle, Patrick S. .
MACROMOLECULES, 2008, 41 (22) :8547-8556
[5]  
Dendukuri D, 2007, LAB CHIP, V7, P818, DOI 10.1039/b703457a
[6]   Microfluidic synthesis of macroporous copolymer particles [J].
Dubinsky, Stanislav ;
Zhang, Hong ;
Nie, Zhihong ;
Gourevich, Ilya ;
Voicu, Dan ;
Deetz, Martin ;
Kumacheva, Eugenia .
MACROMOLECULES, 2008, 41 (10) :3555-3561
[7]   Toward Controlling, the Surface Morphology of Macroporous Copolymer Particles [J].
Dubinsky, Stanislav ;
Park, Jai Il ;
Gourevich, Ilya ;
Chan, Carol ;
Deetz, Martin ;
Kumacheva, Eugenia .
MACROMOLECULES, 2009, 42 (06) :1990-1994
[8]   Mechanisms of proton conductance in polymer electrolyte membranes [J].
Eikerling, M ;
Kornyshev, AA ;
Kuznetsov, AM ;
Ulstrup, J ;
Walbran, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (17) :3646-3662
[9]   Preconcentration of proteins on microfluidic devices using porous silica membranes [J].
Foote, RS ;
Khandurina, J ;
Jacobson, SC ;
Ramsey, JM .
ANALYTICAL CHEMISTRY, 2005, 77 (01) :57-63
[10]   Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification [J].
Gao, J ;
Xu, JD ;
Locascio, LE ;
Lee, CS .
ANALYTICAL CHEMISTRY, 2001, 73 (11) :2648-2655