Punctuated vortex coalescence and discrete scale invariance in two-dimensional turbulence

被引:24
作者
Johansen, A [1 ]
Sornette, D
Hansen, AE
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
[3] CNRS UMR6622, Phys Mat Condensee Lab, F-06108 Nice, France
[4] Univ Sci, F-06108 Nice 2, France
[5] Niels Bohr Inst, Orsted Lab, DK-2100 Copenhagen O, Denmark
[6] Ecole Normale Super, Phys Stat Lab, F-75231 Paris, France
来源
PHYSICA D | 2000年 / 138卷 / 3-4期
关键词
vortex coalescence; discrete scale invariance; two-dimensional turbulence;
D O I
10.1016/S0167-2789(99)00204-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present experimental evidence and theoretical arguments showing that the time-evolution of Freely decaying two-dimensional (2D) turbulence is governed by a discrete time scale invariance rather than a continuous time scale invariance. Physically, this reflects that the time-evolution of the merging of vortices is not smooth but punctuated, leading to a preferred scale factor and, as a consequence, to log-periodic oscillations. From a thorough analysis of freely decaying 2D turbulence experiments, we show that the number of vortices, their radius and separation display log-periodic oscillations as a function of time with an average fog-frequency of approximate to 4-5 corresponding to a preferred scaling ratio of approximate to 1.2-1.3. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:302 / 315
页数:14
相关论文
共 44 条
[1]  
[Anonymous], 1992, SMR
[2]  
[Anonymous], 1987, Dimensional analysis
[3]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[4]   DOES FULLY-DEVELOPED TURBULENCE EXIST - REYNOLDS-NUMBER INDEPENDENCE VERSUS ASYMPTOTIC COVARIANCE [J].
BARENBLATT, GI ;
GOLDENFELD, N .
PHYSICS OF FLUIDS, 1995, 7 (12) :3078-3082
[5]  
Batchelor G K., 1969, Phys. Fluids, V12, pII, DOI [10.1063/1.1692443, DOI 10.1063/1.1692443]
[6]   A SIMPLE POINT VORTEX MODEL FOR 2-DIMENSIONAL DECAYING TURBULENCE [J].
BENZI, R ;
COLELLA, M ;
BRISCOLINI, M ;
SANTANGELO, P .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (05) :1036-1039
[7]   SELF-SIMILAR COHERENT STRUCTURES IN TWO-DIMENSIONAL DECAYING TURBULENCE [J].
BENZI, R ;
PATARNELLO, S ;
SANTANGELO, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05) :1221-1237
[8]   QUANTITATIVE EXPERIMENTAL-STUDY OF THE FREE DECAY OF QUASI-2-DIMENSIONAL TURBULENCE [J].
CARDOSO, O ;
MARTEAU, D ;
TABELING, P .
PHYSICAL REVIEW E, 1994, 49 (01) :454-461
[9]   EVOLUTION OF VORTEX STATISTICS IN 2-DIMENSIONAL TURBULENCE [J].
CARNEVALE, GF ;
MCWILLIAMS, JC ;
POMEAU, Y ;
WEISS, JB ;
YOUNG, WR .
PHYSICAL REVIEW LETTERS, 1991, 66 (21) :2735-2737
[10]   SCALING THEORY OF FRAGMENTATION [J].
CHENG, Z ;
REDNER, S .
PHYSICAL REVIEW LETTERS, 1988, 60 (24) :2450-2453