Local invariants and exceptional divisors of group actions

被引:0
作者
Renner, Lex E. [1 ]
机构
[1] Western Univ, Dept Math, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Group action; Quasi-affine; Exceptional divisor; OBSERVABILITY;
D O I
10.1016/j.jalgebra.2015.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider linear algebraic groups and algebraic varieties defined over the field k. We always assume that k is algebraically closed. Starting with an action G x X -> X, on the normal, quasi-affine variety X, we analyse the maximal G-finite subalgebra O-K of k(X). We also analyse the maximal G-finite subalgebra O-K(p) of k[X](p), where p is a height-one G-invariant prime ideal of k[X]. We use our findings to assess the behaviour of the canonical map pi : U -> U//G Spec(O(U)(G)) for a G-invariant, open subset U of X. It turns out that for any G-invariant divisor D, there is a G-invariant, open subset V such that V boolean AND D not equal phi and the canonical morphism pi : V -> V//G has no exceptional divisors. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 202
页数:15
相关论文
共 18 条
[1]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[2]   Computing invariants of algebraic groups in arbitrary characteristic [J].
Derksen, Harm ;
Kemper, Gregor .
ADVANCES IN MATHEMATICS, 2008, 217 (05) :2089-2129
[3]  
Dufresne E., ARXIV14024299
[4]  
Ferrer-Santos W., 2005, PURE APPL MATH, V268
[5]  
Fossum R., 1973, ERGEB MATH GRENZGEB
[6]   LOCALIZATION AND INVARIANT THEORY [J].
GROSSHANS, F .
ADVANCES IN MATHEMATICS, 1976, 21 (01) :50-60
[7]  
Grosshans F. D., 1997, Algebraic homogeneous spaces and invariant theory, V1673
[8]  
Mumford D., 1994, Geometric Invariant Theory
[9]  
NAGATA M, 1965, LECT 14 PROBLEM HILB
[10]   OBSERVABLE ACTIONS OF ALGEBRAIC GROUPS [J].
Renner, Lex ;
Rittatore, Alvaro .
TRANSFORMATION GROUPS, 2009, 14 (04) :985-999