Deep learning for topology optimization of 2D metamaterials

被引:256
作者
Kollmann, Hunter T. [1 ]
Abueidda, Diab W. [1 ,2 ]
Koric, Seid [1 ,2 ]
Guleryuz, Erman [2 ]
Sobh, Nahil A. [3 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Champaign, IL USA
[2] Univ Illinois, Natl Ctr Supercomp Applicat, Champaign, IL 61820 USA
[3] Univ Illinois, Beckman Inst Sci & Technol, Champaign, IL USA
关键词
Architected materials; Auxetic materials; Homogenization; Machine learning; Microstructure; Periodic boundary conditions (PBCs); HOMOGENIZATION METHOD; NEURAL-NETWORKS; POISSONS RATIO; DESIGN; STABILITY; MODELS;
D O I
10.1016/j.matdes.2020.109098
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-driven models are rising as an auspicious method for the geometrical design of materials and structural systems. Nevertheless, existing data-driven models customarily address the optimization of structural designs rather than metamaterial designs. Metamaterials are emerging as promising materials exhibiting tailorable and unprecedented properties for a wide spectrum of applications. In this paper, we develop a deep learning (DL) model based on a convolutional neural network (CNN) that predicts optimal metamaterial designs. The developed DL model non-iteratively optimizes metamaterials for either maximizing the bulk modulus, maximizing the shear modulus, or minimizing the Poisson's ratio (including negative values). The data are generated by solving a large set of inverse homogenization boundary values problems, with randomly generated geometrical features from a specific distribution. Such s data-driven model can play a vital role in accelerating more computationally expensive design problems, such as multiscale metamaterial systems. (c) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:14
相关论文
共 91 条
[1]  
Abadi Martin, 2016, arXiv
[2]   Mechanical Response of 3D Printed Bending-Dominated Ligament-Based Triply Periodic Cellular Polymeric Solids [J].
Abou-Ali, Aliaa M. ;
Al-Ketan, Oraib ;
Rowshan, Reza ;
Abu Al-Rub, Rashid .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (04) :2316-2326
[3]   Topology optimization of 2D structures with nonlinearities using deep learning [J].
Abueidda, Diab W. ;
Koric, Seid ;
Sobh, Nahil A. .
COMPUTERS & STRUCTURES, 2020, 237
[4]   Compression and buckling of microarchitectured Neovius-lattice [J].
Abueidda, Diab W. ;
Elhebeary, Mohamed ;
Shiang, Cheng-Shen ;
Abu Al-Rub, Rashid K. ;
Jasiuk, Iwona M. .
EXTREME MECHANICS LETTERS, 2020, 37
[5]   Prediction and optimization of mechanical properties of composites using convolutional neural networks [J].
Abueidda, Diab W. ;
Almasri, Mohammad ;
Ammourah, Rami ;
Ravaioli, Umberto ;
Jasiuk, Iwona M. ;
Sobh, Nahil A. .
COMPOSITE STRUCTURES, 2019, 227
[6]   Shielding effectiveness and bandgaps of interpenetrating phase composites based on the Schwarz Primitive surface [J].
Abueidda, Diab W. ;
Karimi, Pouyan ;
Jin, Jian-Ming ;
Sobh, Nahil A. ;
Jasiuk, Iwona M. ;
Ostoja-Starzewski, Martin .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (17)
[7]   Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties [J].
Al-Ketan, Oraib ;
Lee, Dong-Wook ;
Rowshan, Reza ;
Abu Al-Rub, Rashid K. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 102
[8]   Design of periodic elastoplastic energy dissipating microstructures [J].
Alberdi, Ryan ;
Khandelwal, Kapil .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 59 (02) :461-483
[9]   Microstructural characterization and thermomechanical behavior of additively manufactured AlSi10Mg sheet cellular materials [J].
Alhammadi, Alya ;
Al-Ketan, Oraib ;
Khan, Kamran A. ;
Ali, Mohamed ;
Rowshan, Reza ;
Abu Al-Rub, Rashid K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 791
[10]   Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures [J].
Amstutz, S. ;
Giusti, S. M. ;
Novotny, A. A. ;
de Souza Neto, E. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (06) :733-756