On Lorentz spaces Γp,w

被引:44
作者
Kaminska, A [1 ]
Maligranda, L
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
关键词
D O I
10.1007/BF02786637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Lorentz spaces Gamma(p,w), where 0 < p < infinity, and w is a nonnegative measurable weight function. We first present some results concerning new formulas for the quasi-norm, duality, embeddings and Boyd indices. We then show that, whenever Gamma(p,w), does not coincide with L-1 + L-infinity, it contains an order isomorphic and complemented copy of l(p). We apply this result to determine criteria for order convexity and concavity as well as for lower and upper estimates. Finally, we characterize the type and cotype of Gamma(p,w).
引用
收藏
页码:285 / 318
页数:34
相关论文
共 35 条
[1]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[2]   WEIGHTED GENERALIZED HARDY INEQUALITIES FOR NONINCREASING FUNCTIONS [J].
ANDERSEN, KF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1121-1135
[3]   MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS [J].
ARINO, MA ;
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :727-735
[4]  
Bennett C., 1988, INTERPOLATION OPERAT
[5]  
Brudnyi Y A., 1991, Interpolation Functors and Interpolations Spaces, DOI 1,2.2,2.2,2,2.2,2.3,2.4,3,3,3,4,4.3,4,4.6,4,4,4.15,5.4
[6]   REARRANGEMENT-INVARIANT SUBSPACES OF LORENTZ FUNCTION-SPACES [J].
CAROTHERS, NL .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 40 (3-4) :217-228
[7]   On embeddings between classical Lorentz spaces [J].
Carro, M ;
Pick, L ;
Soria, J ;
Stepanov, VD .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03) :397-428
[8]   BOUNDEDNESS OF SOME INTEGRAL-OPERATORS [J].
CARRO, MJ ;
SORIA, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1155-1166
[9]   (P, Q)-CONVEXITY IN QUASI-BANACH LATTICES AND APPLICATIONS [J].
CUARTERO, B ;
TRIANA, MA .
STUDIA MATHEMATICA, 1986, 84 (02) :113-124
[10]   L(P,INFINITY) [J].
CWIKEL, M ;
SAGHER, Y .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 21 (09) :781-&