Heat transfer in fractal materials

被引:29
作者
Tarasov, Vasily E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
关键词
Fractal material; Heat transfer equation; Steady hast flow; Non-integer dimensional space; NONINTEGER DIMENSIONAL SPACE; EFFECTIVE THERMAL-CONDUCTIVITY; CONTINUUM-MECHANICS; POROUS-MEDIA; EQUATIONS; WAVES; MODEL;
D O I
10.1016/j.ijheatmasstransfer.2015.09.086
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat transfer in fractal materials is considered in the framework of continuous models with non-integer dimensional spaces. We use a recently proposed vector calculus in non-integer dimensional spaces to describe heat flow in fractal materials. Solutions of the steady heat flow in fractal pipe and rod are derived. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:427 / 430
页数:4
相关论文
共 27 条
[1]  
Beybalayev V.D., 2010, MATH MODELS COMPUT S, V2, P91
[2]  
Collins J., 1984, Renormalization
[3]   Waves in Fractal Media [J].
Demmie, Paul N. ;
Ostoja-Starzewski, Martin .
JOURNAL OF ELASTICITY, 2011, 104 (1-2) :187-204
[4]   Laplace operators on fractals and related functional equations [J].
Derfel, Gregory ;
Grabner, Peter J. ;
Vogl, Fritz .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (46)
[5]  
Feder J., 1988, Fractals
[6]   Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems [J].
Harrison, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (28) :5317-5327
[7]   Analysis of the effective thermal conductivity of fractal porous media [J].
Huai, Xiulan ;
Wang, Weiwei ;
Li, Zhigang .
APPLIED THERMAL ENGINEERING, 2007, 27 (17-18) :2815-2821
[8]   The effective thermal conductivity of porous media based on statistical self-similarity [J].
Kou, Jianlong ;
Wu, Fengmin ;
Lu, Hangjun ;
Xu, Yousheng ;
Song, Fuquan .
PHYSICS LETTERS A, 2009, 374 (01) :62-65
[9]   Micropolar continuum mechanics of fractal media [J].
Li, Jun ;
Ostoja-Starzewski, Martin .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (12) :1302-1310
[10]  
Moon P., 1953, J. Franklin Inst., V256, P551