Automorphism groups of 2-groups

被引:14
作者
Eick, Bettina [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Math, Braunschweig, Germany
关键词
2-groups; automorphism groups; Coclass theory;
D O I
10.1016/j.jalgebra.2006.01.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well-known conjecture on p-groups states that every non-abelian p-group G has the property that vertical bar G vertical bar divides vertical bar Aut(G)vertical bar. We exhibit periodic patterns in the automorphism group orders of the 2-groups of fixed coclass and we use this to show that for every positive integer r there are at most finitely many counterexamples to the conjecture among the 2-groups of coclass r. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 17 条
[1]  
[Anonymous], GRAD TEXTS MATH
[2]   ON THE AUTOMORPHISM GROUP OF A FINITE P-GROUP WITH A SMALL CENTRAL QUOTIENT [J].
DAVITT, RM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (05) :1168-1176
[3]   Determination of the uniserial space groups with a given coclass [J].
Eick, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 :622-642
[4]   Constructing automorphism groups of p-groups [J].
Eick, B ;
Leedham-Green, CR ;
O'Brien, EA .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (05) :2271-2295
[5]  
EICK B, 2006, UNPUB CLASSIFYING P, V1
[6]   A NOTE ON AUTOMORPHISM GROUP OF A RHO-GROUP [J].
FAUDREE, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (06) :1379-&
[7]  
FLYNN J, 1994, P ROY IRISH ACAD A, V94, P137
[8]   NICHTABELSCHE P-GRUPPEN BESITZEN AUSSERE P-AUTOMORPHISMEN [J].
GASCHUTZ, W .
JOURNAL OF ALGEBRA, 1966, 4 (01) :1-&
[9]  
Gavioli N., 1993, P ROY IRISH ACAD A, V93, P177
[10]  
LEEDHAMGREEN C, 2002, LONDON MATH SOC MONO