Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers

被引:128
|
作者
Shen, Li [1 ,2 ]
Thompson, Paul M. [3 ]
Potkin, Steven G. [4 ]
Bertram, Lars [5 ]
Farrer, Lindsay A. [6 ]
Foroud, Tatiana M. [7 ]
Green, Robert C. [8 ,9 ,10 ]
Hu, Xiaolan [11 ]
Huentelman, Matthew J. [12 ]
Kim, Sungeun [1 ,2 ]
Kauwe, John S. K. [13 ]
Li, Qingqin [14 ]
Liu, Enchi [15 ]
Macciardi, Fabio [4 ,16 ]
Moore, Jason H. [17 ]
Munsie, Leanne [18 ]
Nho, Kwangsik [1 ,2 ]
Ramanan, Vijay K. [1 ,2 ,7 ]
Risacher, Shannon L. [1 ,2 ]
Stone, David J. [19 ]
Swaminathan, Shanker [1 ,2 ]
Toga, Arthur W. [20 ]
Weiner, Michael W. [21 ,22 ,23 ]
Saykin, Andrew J. [1 ,2 ,7 ]
机构
[1] Indiana Univ Sch Med, Dept Radiol & Imaging Sci, Ctr Neuroimaging, Indianapolis, IN 46202 USA
[2] Indiana Univ Sch Med, Dept Radiol & Imaging Sci, Indiana Alzheimers Dis Ctr, Indianapolis, IN 46202 USA
[3] Univ Calif Los Angeles, Sch Med, Dept Neurol, Imaging Genet Ctr,Lab Neuro Imaging, Los Angeles, CA 90095 USA
[4] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92617 USA
[5] Max Planck Inst Mol Genet, Neuropsychiat Genet Grp, D-14195 Berlin, Germany
[6] Boston Univ, Sch Med, Boston, MA 02118 USA
[7] Indiana Univ Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
[8] Brigham & Womens Hosp, Div Genet, Boston, MA 02115 USA
[9] Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
[10] Harvard Univ, Sch Med, Boston, MA 02115 USA
[11] Bristol Myers Squibbs, Clin Genet, Exploratory Clin & Translat Res, Pennington, NJ 08534 USA
[12] Translat Genom Res Inst, Neurogen Div, Phoenix, AZ 85004 USA
[13] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA
[14] Janssen Res & Dev LLC, Dept Neurosci Biomarkers, Raritan, NJ 08869 USA
[15] Janssen Alzheimer Immunotherapy Res & Dev LLC, Biomarker Discovery, San Francisco, CA 94080 USA
[16] Univ Milan, Dept Sci & Biomed Technol, Segrate, MI, Italy
[17] Dartmouth Med Sch, Dept Genet, Computat Genet Lab, Lebanon, NH 03756 USA
[18] Eli Lilly & Co, Tailored Therapeut, Indianapolis, IN 46285 USA
[19] Merck Res Labs, West Point, PA 19486 USA
[20] Univ Calif Los Angeles, Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[21] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA
[22] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
[23] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; Genetic association study; Quantitative traits; Neuroimaging; Biomarker; Cognition; GENOME-WIDE ASSOCIATION; SINGLE-NUCLEOTIDE POLYMORPHISMS; COPY NUMBER VARIATION; E APOE GENOTYPE; ALZHEIMERS-DISEASE; APOLIPOPROTEIN-E; COMMON VARIANTS; PATHWAY ANALYSIS; BRAIN STRUCTURE; BIOLOGICAL PATHWAYS;
D O I
10.1007/s11682-013-9262-z
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The Genetics Core of the Alzheimer's Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer's disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development.
引用
收藏
页码:183 / 207
页数:25
相关论文
共 50 条
  • [1] Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers
    Li Shen
    Paul M. Thompson
    Steven G. Potkin
    Lars Bertram
    Lindsay A. Farrer
    Tatiana M. Foroud
    Robert C. Green
    Xiaolan Hu
    Matthew J. Huentelman
    Sungeun Kim
    John S. K. Kauwe
    Qingqin Li
    Enchi Liu
    Fabio Macciardi
    Jason H. Moore
    Leanne Munsie
    Kwangsik Nho
    Vijay K. Ramanan
    Shannon L. Risacher
    David J. Stone
    Shanker Swaminathan
    Arthur W. Toga
    Michael W. Weiner
    Andrew J. Saykin
    Brain Imaging and Behavior, 2014, 8 : 183 - 207
  • [2] Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans
    Saykin, Andrew J.
    Shen, Li
    Yao, Xiaohui
    Kim, Sungeun
    Nho, Kwangsik
    Risacher, Shannon L.
    Ramanan, Vijay K.
    Foroud, Tatiana M.
    Faber, Kelley M.
    Sarwar, Nadeem
    Munsie, Leanne M.
    Hu, Xiaolan
    Soares, Holly D.
    Potkin, Steven G.
    Thompson, Paul M.
    Kauwe, John S. K.
    Kaddurah-Daouk, Rima
    Green, Robert C.
    Toga, Arthur W.
    Weiner, Michael W.
    ALZHEIMERS & DEMENTIA, 2015, 11 (07) : 792 - 814
  • [3] Genetic, Structural and Functional Imaging Biomarkers for Early Detection of Conversion from MCI to AD
    Singh, Nikhil
    Wang, Angela Y.
    Sankaranarayanan, Preethi
    Fletcher, P. Thomas
    Joshi, Sarang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT I, 2012, 7510 : 132 - 140
  • [4] Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study
    Kim, Sungeun
    Shen, Li
    Saykin, Andrew J.
    West, John D.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 3849 - 3852
  • [5] Spatial Cognition in Normal Aging, MCI and AD
    Ruggiero, Gennaro
    Iachini, Tina
    CURRENT ALZHEIMER RESEARCH, 2018, 15 (03) : 202 - 204
  • [6] Spatial cognition and the human navigation network in AD and MCI
    Deipolyi, A. R.
    Rankin, K. P.
    Mucke, L.
    Miller, B. L.
    Gorno-Tempini, M. L.
    NEUROLOGY, 2007, 69 (10) : 986 - 997
  • [7] Amyloid PET Imaging: MCI and AD
    Kepe, Vladimir
    PET CLINICS, 2013, 8 (04) : 431 - +
  • [8] Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort
    Shen, Li
    Kim, Sungeun
    Risacher, Shannon L.
    Nho, Kwangsik
    Swaminathan, Shanker
    West, John D.
    Foroud, Tatiana
    Pankratz, Nathan
    Moore, Jason H.
    Sloan, Chantel D.
    Huentelman, Matthew J.
    Craig, David W.
    DeChairo, Bryan M.
    Potkin, Steven G.
    Jack, Clifford R., Jr.
    Weiner, Michael W.
    Saykin, Andrew J.
    NEUROIMAGE, 2010, 53 (03) : 1051 - 1063
  • [9] CSF biomarkers and APOE4 in MCI, AD and related disorders: usefulness for diagnosis and correlation with clinical phenotypes
    Guidi, L.
    Galimberti, D.
    Fenoglio, C.
    Venturelli, E.
    Perego, L.
    Bresolin, N.
    Scarpini, E.
    JOURNAL OF NEUROLOGY, 2007, 254 : 43 - 43
  • [10] CSF biomarkers to predict incipient AD in MCI cases
    Blennow, K
    INTERNATIONAL PSYCHOGERIATRICS, 2005, 17 : 118 - 118