Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures

被引:135
作者
Bellan, Leon M. [1 ]
Singh, Sunil P. [2 ]
Henderson, Peter W. [2 ]
Porri, Teresa J. [1 ]
Craighead, Harold G. [1 ]
Spector, Jason A. [2 ]
机构
[1] Cornell Univ, Nanobiotechnol Ctr, Ithaca, NY 14853 USA
[2] Cornell Univ, Weill Med Coll, New York, NY 10065 USA
基金
美国国家科学基金会;
关键词
MICROVASCULAR NETWORKS; EXTRACELLULAR MATRICES; MICROFLUIDIC DEVICES; TISSUE; SCAFFOLDS; HYDROGELS; FIBERS;
D O I
10.1039/b819905a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using sacrificial sugar structures, we have formed a 3D fluidic vascular network in a polymeric matrix. Melt-spun sugar fibers (cotton candy) were used to form channels with diameters and densities similar to those of capillaries. To interface to macroscopic fluidic systems, larger sacrificial sugar structures were used to form an artificial inlet and outlet. To verify that the channel network supported flow, we used video fluorescence microscopy to image both 2 mu m fluorescent polystyrene spheres in an aqueous solution and fluorescently labeled blood. This fabrication process may be applied to a wide range of polymeric materials and is rapid, inexpensive, and highly scalable.
引用
收藏
页码:1354 / 1357
页数:4
相关论文
共 33 条
  • [1] Oxygen diffusion through natural extracellular matrices: Implications for estimating "Critical thickness" values in tendon tissue engineering
    Androjna, Caroline
    Gatica, Jorge E.
    Belovich, Joanne M.
    Derwin, Kathleen A.
    [J]. TISSUE ENGINEERING PART A, 2008, 14 (04) : 559 - 569
  • [2] Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers
    Bellan, Leon M.
    Strychalski, Elizabeth A.
    Craighead, Harold G.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (05): : 1728 - 1731
  • [3] Microfabrication technology for vascularized tissue engineering
    Borenstein, JT
    Terai, H
    King, KR
    Weinberg, EJ
    Kaazempur-Mofrad, MR
    Vacanti, JP
    [J]. BIOMEDICAL MICRODEVICES, 2002, 4 (03) : 167 - 175
  • [4] Novel anisotropic engineered cardiac tissues: Studies of electrical propagation
    Bursac, Nenad
    Loo, Yihua
    Leong, Kam
    Tung, Leslie
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 361 (04) : 847 - 853
  • [5] Chen GP, 2002, MACROMOL BIOSCI, V2, P67, DOI 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.3.CO
  • [6] 2-6
  • [7] Using three-dimensional microfluidic networks for solving computationally hard problems
    Chiu, DT
    Pezzoli, E
    Wu, HK
    Stroock, AD
    Whitesides, GM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) : 2961 - 2966
  • [8] Microfluidic scaffolds for tissue engineering
    Choi, Nak Won
    Cabodi, Mario
    Held, Brittany
    Gleghorn, Jason P.
    Bonassar, Lawrence J.
    Stroock, Abraham D.
    [J]. NATURE MATERIALS, 2007, 6 (11) : 908 - 915
  • [9] Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth
    Cooke, MN
    Fisher, JP
    Dean, D
    Rimnac, C
    Mikos, AG
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2003, 64B (02) : 65 - 69
  • [10] Freitas RJ, 1999, Nanomedicine: basic capabilities