An upper bound on the domination number of n-vertex connected cubic graphs

被引:16
作者
Kostochka, A. V. [1 ,2 ]
Stodolsky, B. Y. [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Cubic graphs; Domination; Connected graphs;
D O I
10.1016/j.disc.2007.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1996, Reed proved that the domination number gamma(G) of every n-vertex graph G with minimum degree at least 3 is at most 3n/8. This bound is sharp for cubic graphs if there is no restriction on connectivity. In this paper we show that gamma(G) <= 4n/11 for every n-vertex cubic connected graph G if n > 8. Note that Reed's conjecture that gamma(G) <= inverted right perpendicularn/3inverted left perpendicular for every connected cubic n-vertex graph G is not true. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1142 / 1162
页数:21
相关论文
共 10 条
[1]  
Blank M.M., 1973, PRIKL MAT PROGRAMMIR, P3
[2]  
Cropper M, 2005, AKCE INT J GRAPHS CO, V2, P137
[3]   Domination in a graph with a 2-factor [J].
Kawarabayashi, K ;
Plummer, MD ;
Saito, A .
JOURNAL OF GRAPH THEORY, 2006, 52 (01) :1-6
[4]  
KELMANS A, COUNTEREXAMPLE UNPUB
[5]   On domination in connected cubic graphs [J].
Kostochka, AV ;
Stodolsky, BY .
DISCRETE MATHEMATICS, 2005, 304 (1-3) :45-50
[6]  
LOWENSTEIN C, DOMINATION GRA UNPUB
[7]  
ORE O, 1962, AM MATH SOC C PUB, V3
[8]  
Plummer M., COMMUNICATION
[9]  
Reed B. A., 1996, Combin. Probab. Comput., V5, P277
[10]  
Stodolsky B. Y., DOMINATION 2 C UNPUB