Hamiltonian constraints and unfree gauge symmetry

被引:9
作者
Abakumova, V. A. [1 ]
Lyakhovich, S. L. [1 ]
机构
[1] Tomsk State Univ, Phys Fac, Tomsk 634050, Russia
关键词
D O I
10.1103/PhysRevD.102.125003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study Hamiltonian form of unfree gauge symmetry where the gauge parameters have to obey differential equations. We consider the general case such that the Dirac-Bergmann algorithm does not necessarily terminate at secondary constraints, and tertiary and higher order constraints may arise. Given the involution relations for the first-class constraints of all generations, we provide explicit formulas for unfree gauge transformations in the Hamiltonian form, including the differential equations constraining gauge parameters. All the field theories with unfree gauge symmetry share the common feature: they admit sort of "global constants of motion" such that do not depend on the local degrees of freedom. The simplest example is the cosmological constant in the unimodular gravity. We consider these constants as modular parameters rather than conserved quantities. We provide a systematic way of identifying all the modular parameters. We demonstrate that the modular parameters contribute to the Hamiltonian constraints, while they are not explicitly involved in the action. The Hamiltonian analysis of the unfree gauge symmetry is precessed by a brief exposition for the Lagrangian analogue, including explicitly covariant formula for degrees of freedom number count. We also adjust the Batalin-Fradkin-Vilkovisky-Becchi-Rouet-Stora-Tyutin Hamiltonian quantization method for the case of unfree gauge symmetry. The main distinction is in the content of the nonminimal sector and gauge fixing procedure. The general formalism is exemplified by traceless tensor fields of irreducible spin s with the gauge symmetry parameters obeying transversality equations.
引用
收藏
页数:16
相关论文
共 17 条
[1]   Unfree gauge symmetry in the Hamiltonian formalism [J].
Abakumova, V. A. ;
Karataeva, I. Yu. ;
Lyakhovich, S. L. .
PHYSICS LETTERS B, 2020, 802
[2]   Transverse Fierz-Pauli symmetry [J].
Alvarez, E. ;
Blas, D. ;
Garriga, J. ;
Verdaguer, E. .
NUCLEAR PHYSICS B, 2006, 756 (03) :148-170
[3]   Dynamics of the generalized unimodular gravity theory [J].
Barvinsky, A. O. ;
Kolganov, N. ;
Kurov, A. ;
Nesterov, D. .
PHYSICAL REVIEW D, 2019, 100 (02)
[4]   Darkness without dark matter and energy - generalized unimodular gravity [J].
Barvinsky, A. O. ;
Kamenshchik, A. Yu. .
PHYSICS LETTERS B, 2017, 774 :59-63
[5]  
Batalin I. A., 1991, P 18 INT C GROUP THE, P57
[6]   Gauge symmetry and consistent spin-2 theories [J].
Blas, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (25) :6965-6971
[7]   Maxwell-like Lagrangians for higher spins [J].
Campoleoni, Andrea ;
Francia, Dario .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (03)
[8]   Cubic interactions of Maxwell-like higher spins [J].
Francia, Dario ;
Lo Monaco, Gabriele ;
Mkrtchyan, Karapet .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04)
[9]   On the gauge symmetries of Maxwell-like higher-spin Lagrangians [J].
Francia, Dario ;
Lyakhovich, Simon L. ;
Sharapov, Alexey A. .
NUCLEAR PHYSICS B, 2014, 881 :248-268
[10]   MASSLESS FIELDS WITH INTEGER SPIN [J].
FRONSDAL, C .
PHYSICAL REVIEW D, 1978, 18 (10) :3624-3629