GROUP CLASSIFICATION OF VARIABLE COEFFICIENT QUASILINEAR REACTION-DIFFUSION EQUATIONS

被引:8
作者
Vaneeva, Olena [1 ]
Zhalij, Alexander [1 ]
机构
[1] NAS Ukraine, Inst Math, Dept Appl Res, Kiev, Ukraine
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2013年 / 94卷 / 108期
关键词
Group classification; reaction-diffusion equations; Lie symmetry; admissible transformations; equivalence transformations; PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEARITIES;
D O I
10.2298/PIM1308081V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The group classification of variable coefficient quasilinear reaction-diffusion equations u(t) = u(xx) + h(x)B(u) is carried out exhaustively. This became possible due to usage of a conditional equivalence group found in the course of the study of admissible point transformations within the class.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 1994, SYMMETRIES EQUATIONS
[2]   The structure of lie algebras and the classification problem for partial differential equations [J].
Basarab-Horwath, P ;
Lahno, V ;
Zhdanov, R .
ACTA APPLICANDAE MATHEMATICAE, 2001, 69 (01) :43-94
[3]   Complete group classification of a class of nonlinear wave equations [J].
Bihlo, Alexander ;
Cardoso-Bihlo, Elsa Dos Santos ;
Popovych, Roman O. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
[4]   Nonclassical symmetry solutions for reaction-diffusion equations with explicit spatial dependence [J].
Bradshaw-Hajek, B. H. ;
Edwards, M. P. ;
Broadbridge, P. ;
Williams, G. H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (09) :2541-2552
[5]  
BRADSHAWHAJEK BH, 2004, THESIS U WOLLONGONG
[6]  
DORODNITSYN VA, 1979, 57 AC SCI USSR KELD
[7]  
Ibragimov N.H., 1994, symmetries, exact solutions and conservation laws, V1-2
[8]  
Ivanova N.M., ARXIV07103049
[9]  
Ivanova N.M., 2009, P 4 INT WORKSH GROUP, P84
[10]  
Ivanova NM, 2005, P 10 INT C MOD GROUP, P107