GROUP CLASSIFICATION OF VARIABLE COEFFICIENT QUASILINEAR REACTION-DIFFUSION EQUATIONS

被引:7
作者
Vaneeva, Olena [1 ]
Zhalij, Alexander [1 ]
机构
[1] NAS Ukraine, Inst Math, Dept Appl Res, Kiev, Ukraine
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2013年 / 94卷 / 108期
关键词
Group classification; reaction-diffusion equations; Lie symmetry; admissible transformations; equivalence transformations; PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEARITIES;
D O I
10.2298/PIM1308081V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The group classification of variable coefficient quasilinear reaction-diffusion equations u(t) = u(xx) + h(x)B(u) is carried out exhaustively. This became possible due to usage of a conditional equivalence group found in the course of the study of admissible point transformations within the class.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 23 条
  • [1] [Anonymous], 1994, SYMMETRIES EQUATIONS
  • [2] The structure of lie algebras and the classification problem for partial differential equations
    Basarab-Horwath, P
    Lahno, V
    Zhdanov, R
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2001, 69 (01) : 43 - 94
  • [3] Complete group classification of a class of nonlinear wave equations
    Bihlo, Alexander
    Cardoso-Bihlo, Elsa Dos Santos
    Popovych, Roman O.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [4] Nonclassical symmetry solutions for reaction-diffusion equations with explicit spatial dependence
    Bradshaw-Hajek, B. H.
    Edwards, M. P.
    Broadbridge, P.
    Williams, G. H.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (09) : 2541 - 2552
  • [5] BRADSHAWHAJEK BH, 2004, THESIS U WOLLONGONG
  • [6] DORODNITSYN VA, 1979, 57 AC SCI USSR KELD
  • [7] Ibragimov N.H., 1994, symmetries, exact solutions and conservation laws, V1-2
  • [8] Ivanova N.M., ARXIV07103049
  • [9] Ivanova N.M., 2009, P 4 INT WORKSH GROUP, P84
  • [10] Ivanova NM, 2005, P 10 INT C MOD GROUP, P107