In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution

被引:198
作者
Wang, Jiong [1 ]
Gan, Liyong [2 ]
Zhang, Wenyu [1 ]
Peng, Yuecheng [1 ]
Yu, Hong [3 ]
Yan, Qingyu [3 ]
Xia, Xinghua [4 ]
Wang, Xin [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] South China Univ Technol, Key Lab Adv Energy Storage Mat Guangdong Prov, Sch Mat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[4] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210046, Jiangsu, Peoples R China
基金
新加坡国家研究基金会;
关键词
WATER OXIDATION; CARBON-MONOXIDE; REACTION DYNAMICS; CO2; REDUCTION; REDOX STATES; IRON; COMPLEXES; ELECTRODES; CATALYSTS; METAL;
D O I
10.1126/sciadv.aap7970
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecularly well-defined Ni sites at heterogeneous interfaces were derived from the incorporation of Ni2+ ions into heteroatom-doped graphene. The molecular Ni sites on graphene were redox-active. However, they showed poor activity toward oxygen evolution reaction (OER) in KOH aqueous solution. We demonstrated for the first time that the presence of Fe3+ ions in the solution could bond at the vicinity of the Ni sites with a distance of 2.7 angstrom, generating molecularly sized and heterogeneous Ni-Fe sites anchored on doped graphene. These Ni-Fe sites exhibited markedly improved OER activity. The Pourbaix diagram confirmed the formation of the Ni-Fe sites and revealed that the Ni-Fe sites adsorbed HO- ions with a bridge geometry, which facilitated the OER electrocatalysis.
引用
收藏
页数:8
相关论文
共 51 条
[1]  
Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
[2]   Tuning redox potentials of bis(imino)pyridine cobalt complexes: an experimental and theoretical study involving solvent and ligand effects [J].
Araujo, C. Moyses ;
Doherty, Mark D. ;
Konezny, Steven J. ;
Luca, Oana R. ;
Usyatinsky, Alex ;
Grade, Hans ;
Lobkovsky, Emil ;
Soloveichik, Grigorii L. ;
Crabtree, Robert H. ;
Batista, Victor S. .
DALTON TRANSACTIONS, 2012, 41 (12) :3562-3573
[3]  
Bang S, 2014, NAT CHEM, V6, P934, DOI [10.1038/NCHEM.2055, 10.1038/nchem.2055]
[4]   Nickel-Iron Dithiolato Hydrides Relevant to the [NiFe]-Hydrogenase Active Site [J].
Barton, Bryan E. ;
Whaley, C. Matthew ;
Rauchfuss, Thomas B. ;
Gray, Danielle L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (20) :6942-+
[5]   Molecular Catalysts for Water Oxidation [J].
Blakemore, James D. ;
Crabtree, Robert H. ;
Brudvig, Gary W. .
CHEMICAL REVIEWS, 2015, 115 (23) :12974-13005
[6]   Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production [J].
Blakemore, James D. ;
Gupta, Ayush ;
Warren, Jeffrey J. ;
Brunschwig, Bruce S. ;
Gray, Harry B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18288-18291
[7]   Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production [J].
Canaguier, Sigolene ;
Artero, Vincent ;
Fontecave, Marc .
DALTON TRANSACTIONS, 2008, (03) :315-325
[8]   Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy [J].
Chen, Jamie Y. C. ;
Dang, Lianna ;
Liang, Hanfeng ;
Bi, Wenli ;
Gerken, James B. ;
Jin, Song ;
Alp, E. Ercan ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15090-15093
[9]   From supported homogeneous catalysts to heterogeneous molecular catalysts [J].
Choplin, A ;
Quignard, F .
COORDINATION CHEMISTRY REVIEWS, 1998, 178 :1679-1702
[10]   Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling [J].
Cole-Hamilton, DJ .
SCIENCE, 2003, 299 (5613) :1702-1706