In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution

被引:193
作者
Wang, Jiong [1 ]
Gan, Liyong [2 ]
Zhang, Wenyu [1 ]
Peng, Yuecheng [1 ]
Yu, Hong [3 ]
Yan, Qingyu [3 ]
Xia, Xinghua [4 ]
Wang, Xin [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] South China Univ Technol, Key Lab Adv Energy Storage Mat Guangdong Prov, Sch Mat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[4] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210046, Jiangsu, Peoples R China
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 03期
基金
新加坡国家研究基金会;
关键词
WATER OXIDATION; CARBON-MONOXIDE; REACTION DYNAMICS; CO2; REDUCTION; REDOX STATES; IRON; COMPLEXES; ELECTRODES; CATALYSTS; METAL;
D O I
10.1126/sciadv.aap7970
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecularly well-defined Ni sites at heterogeneous interfaces were derived from the incorporation of Ni2+ ions into heteroatom-doped graphene. The molecular Ni sites on graphene were redox-active. However, they showed poor activity toward oxygen evolution reaction (OER) in KOH aqueous solution. We demonstrated for the first time that the presence of Fe3+ ions in the solution could bond at the vicinity of the Ni sites with a distance of 2.7 angstrom, generating molecularly sized and heterogeneous Ni-Fe sites anchored on doped graphene. These Ni-Fe sites exhibited markedly improved OER activity. The Pourbaix diagram confirmed the formation of the Ni-Fe sites and revealed that the Ni-Fe sites adsorbed HO- ions with a bridge geometry, which facilitated the OER electrocatalysis.
引用
收藏
页数:8
相关论文
共 51 条
  • [1] Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
  • [2] Tuning redox potentials of bis(imino)pyridine cobalt complexes: an experimental and theoretical study involving solvent and ligand effects
    Araujo, C. Moyses
    Doherty, Mark D.
    Konezny, Steven J.
    Luca, Oana R.
    Usyatinsky, Alex
    Grade, Hans
    Lobkovsky, Emil
    Soloveichik, Grigorii L.
    Crabtree, Robert H.
    Batista, Victor S.
    [J]. DALTON TRANSACTIONS, 2012, 41 (12) : 3562 - 3573
  • [3] Bang S, 2014, NAT CHEM, V6, P934, DOI [10.1038/NCHEM.2055, 10.1038/nchem.2055]
  • [4] Nickel-Iron Dithiolato Hydrides Relevant to the [NiFe]-Hydrogenase Active Site
    Barton, Bryan E.
    Whaley, C. Matthew
    Rauchfuss, Thomas B.
    Gray, Danielle L.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (20) : 6942 - +
  • [5] Molecular Catalysts for Water Oxidation
    Blakemore, James D.
    Crabtree, Robert H.
    Brudvig, Gary W.
    [J]. CHEMICAL REVIEWS, 2015, 115 (23) : 12974 - 13005
  • [6] Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production
    Blakemore, James D.
    Gupta, Ayush
    Warren, Jeffrey J.
    Brunschwig, Bruce S.
    Gray, Harry B.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) : 18288 - 18291
  • [7] Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production
    Canaguier, Sigolene
    Artero, Vincent
    Fontecave, Marc
    [J]. DALTON TRANSACTIONS, 2008, (03) : 315 - 325
  • [8] Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy
    Chen, Jamie Y. C.
    Dang, Lianna
    Liang, Hanfeng
    Bi, Wenli
    Gerken, James B.
    Jin, Song
    Alp, E. Ercan
    Stahl, Shannon S.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) : 15090 - 15093
  • [9] From supported homogeneous catalysts to heterogeneous molecular catalysts
    Choplin, A
    Quignard, F
    [J]. COORDINATION CHEMISTRY REVIEWS, 1998, 178 : 1679 - 1702
  • [10] Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling
    Cole-Hamilton, DJ
    [J]. SCIENCE, 2003, 299 (5613) : 1702 - 1706