Stability of non compact steady and expanding gradient Ricci solitons

被引:6
作者
Deruelle, Alix [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
RIGIDITY; INEQUALITIES; INSTABILITY; CURVATURE;
D O I
10.1007/s00526-015-0868-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability of non compact steady and expanding gradient Ricci solitons. We first show that linear stability implies dynamical stability. Then we give various sufficient geometric conditions ensuring the linear stability of such gradient Ricci solitons.
引用
收藏
页码:2367 / 2405
页数:39
相关论文
共 33 条
[1]  
Ache A. G., 2013, ARXIV12113387V2
[2]  
Agmon Shmuel., 1982, Mathematical Notes, V29
[3]   A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds [J].
Anderson, G ;
Chow, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (01) :1-12
[4]  
[Anonymous], 2006, Grad. Stud. Math
[5]   Stability of symmetric spaces of noncompact type under Ricci flow [J].
Bamler, Richard H. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (02) :342-416
[6]   REAL ANALYTICITY OF SOLUTIONS OF HAMILTONS EQUATION [J].
BANDO, S .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (01) :93-97
[7]   Rotational symmetry of self-similar solutions to the Ricci flow [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :731-764
[8]  
Carrillo JA, 2009, COMMUN ANAL GEOM, V17, P721
[9]   Hardy inequalities on non-compact Riemannian manifolds [J].
Carron, G .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :883-891
[10]  
Chen C.-W., ASIAN J MAT IN PRESS