Almost classical solutions of Hamilton-Jacobi equations

被引:0
作者
Deville, Robert [1 ]
Jaramillo, Jesus A. [2 ]
机构
[1] Univ Bordeaux 1, Math Lab, F-33405 Talence, France
[2] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
Hamilton-Jacobi equations; eikonal equation on manifolds; almost everywhere solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of everywhere differentiable functions which are almost everywhere solutions of quite general Hamilton-Jacobi equations on open subsets of R(d) or on d-dimensional manifolds whenever d >= 2. In particular, when M is a Riemannian manifold, we prove the existence of a differentiable function a on M which satisfies the Eikonal equation parallel to del u(x)parallel to(x) = 1 almost everywhere on M.
引用
收藏
页码:989 / 1010
页数:22
相关论文
共 50 条
[41]   Viscosity Solutions of Hamilton-Jacobi Equations in Proper CAT(0) Spaces [J].
Jerhaoui, Othmane ;
Zidani, Hasnaa .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)
[42]   A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations [J].
Tsai, YHR ;
Giga, Y ;
Osher, S .
MATHEMATICS OF COMPUTATION, 2003, 72 (241) :159-181
[43]   Convergence of solutions of Hamilton-Jacobi equations depending nonlinearly on the unknown function [J].
Chen, Qinbo .
ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (01) :45-68
[44]   Viscosity Solutions of Hamilton-Jacobi Equations for Neutral-Type Systems [J].
Plaksin, Anton .
APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01)
[45]   LIPSCHITZ DEPENDENCE OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS WITH RESPECT TO THE PARAMETER [J].
Wang, Kaizhi ;
Yan, Jun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (03) :1649-1659
[46]   Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations [J].
Roquejoffre, JM .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (01) :85-104
[47]   Asymptotic solutions of Hamilton-Jacobi equations with semi-periodic Hamiltonians [J].
Ichihara, Naoyuki ;
Ishii, Hitoshi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (05) :784-807
[48]   THE ASYMPTOTIC BOUNDS OF VISCOSITY SOLUTIONS OF THE CAUCHY PROBLEM FOR HAMILTON-JACOBI EQUATIONS [J].
Wang, Kaizhi .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) :217-232
[49]   Asymptotic solutions of Hamilton-Jacobi equations for large time and related topics [J].
Ishii, Hitoshi .
ICIAM 07: 6TH INTERNATIONAL CONGRESS ON INDUSTRIAL AND APPLIED MATHEMATICS, 2009, :193-217
[50]   Hamilton-Jacobi Equations with Discontinuous Source Terms [J].
Giga, Yoshikazu ;
Hamamuki, Nao .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (02) :199-243