Almost classical solutions of Hamilton-Jacobi equations

被引:0
作者
Deville, Robert [1 ]
Jaramillo, Jesus A. [2 ]
机构
[1] Univ Bordeaux 1, Math Lab, F-33405 Talence, France
[2] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
Hamilton-Jacobi equations; eikonal equation on manifolds; almost everywhere solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of everywhere differentiable functions which are almost everywhere solutions of quite general Hamilton-Jacobi equations on open subsets of R(d) or on d-dimensional manifolds whenever d >= 2. In particular, when M is a Riemannian manifold, we prove the existence of a differentiable function a on M which satisfies the Eikonal equation parallel to del u(x)parallel to(x) = 1 almost everywhere on M.
引用
收藏
页码:989 / 1010
页数:22
相关论文
共 50 条
[21]   Generic singularities of minimax solutions to Hamilton-Jacobi equations [J].
Capitanio, G .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 52 (04) :458-468
[22]   Minimax solutions of Hamilton-Jacobi equations with fractional coinvariant derivatives* [J].
Gomoyunov, Mikhail Igorevich .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
[23]   Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space [J].
Fujita, Yasuhiro ;
Ishii, Hitoshi ;
Loreti, Paola .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (05) :1671-1700
[24]   Uniqueness of solutions to Hamilton-Jacobi equations arising in the Calculus of Variations [J].
Dal Maso, G ;
Frankowska, H .
OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, :335-345
[25]   ASYMPTOTIC LIPSCHITZ REGULARITY OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
Li, Xia ;
Wang, Lin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) :1571-1583
[26]   On global solutions of the random Hamilton-Jacobi equations and the KPZ problem [J].
Bakhtin, Yuri ;
Khanin, Konstantin .
NONLINEARITY, 2018, 31 (04) :R93-R121
[27]   SYMMETRY PROPERTIES OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS WITHOUT UNIQUENESS [J].
BADIALE, M ;
BARDI, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (11) :1031-1043
[28]   FINITE-TIME CONVERGENCE OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
Wang, Kaizhi ;
Yan, Jun ;
Zhao, Kai .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (03) :1187-1196
[29]   Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians [J].
Ishii, Hitoshi ;
Mitake, Hiroyoshi .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (05) :2159-2183
[30]   Homogenization of generalized characteristics associated to solutions of Hamilton-Jacobi equations [J].
Yu, Yifeng .
ASYMPTOTIC ANALYSIS, 2010, 69 (1-2) :99-116