Approximations for reflected fractional Brownian motion

被引:6
|
作者
Malsagov, Artagan [1 ]
Mandjes, Michel [1 ]
机构
[1] Univ Amsterdam, Korteweg De Vries Inst Math, Sci Pk 105, NL-1098 XH Amsterdam, Netherlands
关键词
ANOMALOUS DIFFUSION;
D O I
10.1103/PhysRevE.100.032120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fractional Brownian motion is a widely used stochastic process that is particularly suited to model anomalous diffusion. We focus on capturing the mean and variance of fractional Brownian motion reflected at level 0. As explicit expressions or numerical techniques are not available, we base our analysis on Monte Carlo simulation. Our main findings concern closed-form approximations of the mean and variance, with a near-perfect fit.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Discrete approximations to reflected Brownian motion
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    ANNALS OF PROBABILITY, 2008, 36 (02): : 698 - 727
  • [2] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [3] On the infimum attained by the reflected fractional Brownian motion
    K. Dębicki
    K. M. Kosiński
    Extremes, 2014, 17 : 431 - 446
  • [4] DISCRETIZATION ERROR OF REFLECTED FRACTIONAL BROWNIAN MOTION
    McGlaughlin, Peter
    Chronopoulou, Alexandra
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 270 - 276
  • [5] On the infimum attained by the reflected fractional Brownian motion
    Debicki, K.
    Kosinski, K. M.
    EXTREMES, 2014, 17 (03) : 431 - 446
  • [6] On the supremum of γ-reflected processes with fractional Brownian motion as input
    Hashorva, Enkelejd
    Ji, Lanpeng
    Piterbarg, Vladimir I.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 4111 - 4127
  • [7] Reflected fractional Brownian motion in one and higher dimensions
    Vojta, Thomas
    Halladay, Samuel
    Skinner, Sarah
    Janusonis, Skirmantas
    Guggenberger, Tobias
    Metzler, Ralf
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [8] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [9] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [10] On weak approximations of integrals with respect to fractional Brownian motion
    Slominski, Leszek
    Ziemkiewicz, Bartosz
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 543 - 552