Ideal shear strain of metals and ceramics

被引:324
作者
Ogata, S [1 ]
Li, J
Hirosaki, N
Shibutani, Y
Yip, S
机构
[1] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
[2] Osaka Univ, Handai Frontier Res Ctr, Osaka 5650871, Japan
[3] Osaka Univ, Dept Mech & Syst Engn, Osaka 5650871, Japan
[4] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[5] Natl Inst Mat Sci, Adv Mat Lab, Ibaraki 3050044, Japan
[6] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevB.70.104104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using density functional theory we analyze the stress-strain responses of 22 simple metals and ceramics to determine the maximum shear strain a homogeneous crystal can withstand, a property for which we suggest the name shearability. A shearability gap is found between metals and covalent ceramics. Shearability of metals further correlates with the degree of valence charge localization and directional bonding. Depending on the deformation constraints, ionic solids may possess even larger shearability than covalent solids. The Frenkel model of ideal shear strength works well for both metals and ceramics when shearability is used in the scaling.
引用
收藏
页码:104104 / 1
页数:7
相关论文
共 34 条
[1]   HIGH-TEMPERATURE MOMENT-VOLUME INSTABILITY AND ANTI-INVAR OF GAMMA-FE [J].
ACET, M ;
ZAHRES, H ;
WASSERMANN, EF ;
PEPPERHOFF, W .
PHYSICAL REVIEW B, 1994, 49 (09) :6012-6017
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Ab initio calculations of elastic and magnetic properties of Fe, Co, Ni, and Cr crystals under isotropic deformation -: art. no. 035116 [J].
Cerny, M ;
Pokluda, J ;
Sob, M ;
Friák, M ;
Sandera, P .
PHYSICAL REVIEW B, 2003, 67 (03)
[5]   Phonon instabilities and the ideal strength of aluminum [J].
Clatterbuck, DM ;
Krenn, CR ;
Cohen, ML ;
Morris, JW .
PHYSICAL REVIEW LETTERS, 2003, 91 (13) :135501-135501
[6]  
Donohue J., 1974, STRUCTURES ELEMENTS
[7]   SINGLE-CRYSTAL ELASTIC MODULI + HCP TO BCC TRANSFORMATION IN TI,ZR, + HF [J].
FISHER, ES ;
RENKEN, CJ .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 135 (2A) :A482-&
[8]   FACTORS CONTROLLING DISLOCATION WIDTHS [J].
FOREMAN, AJ ;
JASWON, MA ;
WOOD, JK .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1951, 64 (374) :156-163
[9]   The theory of the elastic limit and the solidity of crystal bodies [J].
Frenkel, J .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (7/8) :572-609
[10]   CRYSTAL-STRUCTURE OF BETA-SI3N4 - STRUCTURAL AND STABILITY CONSIDERATIONS BETWEEN ALPHA-SI3N4 AND BETA-SI3N4 [J].
GRUN, R .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1979, 35 (APR) :800-804