Infrared image super-resolution reconstruction by using generative adversarial network with an attention mechanism

被引:20
|
作者
Liu, Qing-Ming [1 ]
Jia, Rui-Sheng [1 ,2 ]
Liu, Yan-Bo [1 ]
Sun, Hai-Bin [1 ,2 ]
Yu, Jian-Zhi [1 ,2 ]
Sun, Hong-Mei [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Shandong Prov Key Lab Wisdom Mine Informat Techno, Qingdao 266590, Peoples R China
关键词
Infrared images; Super-resolution reconstruction; Attention mechanism; Generative adversarial network;
D O I
10.1007/s10489-020-01987-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the limitations of infrared imaging principles and imaging systems, many problems are typically encountered with collected infrared images, such as low resolution, insufficient detail information, and blurred edges. In response to these problems, a method of infrared image super-resolution reconstruction that uses recursive attention and is based on a generative adversarial network is proposed. First, according to the characteristics of low-resolution infrared images such as uniform pixel distributions, low contrast, and poor perceived quality, a deep generator structure with a recursive-attention network is designed in this article. The recursive-attention module is used to extract high-frequency information from the feature maps, suppress useless information, and enhance the expressiveness of the features, which facilitates the reconstruction of texture details of infrared images. Then, to better distinguish the reconstructed images from the original high-resolution images, we designed a discriminator that was composed of a deep convolutional neural network. In addition, targeted improvements were made to the content loss function of GAN. We used the pre-trained VGG-19 network features before activation to calculate the perceptual loss, which helps recover the texture details of the infrared images. The experimental results on infrared image datasets demonstrated that the reconstruction performance of the proposed method is higher than those of several typical methods, and it realizes higher image visual quality.
引用
收藏
页码:2018 / 2030
页数:13
相关论文
共 50 条
  • [41] A Positive-Unlabeled Generative Adversarial Network for Super-Resolution Image Reconstruction Using a Charbonnier Loss
    Xu, Shuhua
    Qi, Mingming
    Wang, Xianming
    Zhao, Hanli
    Hu, Zhongyi
    Sun, Hongyu
    TRAITEMENT DU SIGNAL, 2022, 39 (03) : 1061 - 1069
  • [42] Spatial Transformer Generative Adversarial Network for Image Super-Resolution
    Rempakos, Pantelis
    Vrigkas, Michalis
    Plissiti, Marina E.
    Nikou, Christophoros
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 399 - 411
  • [43] A lightweight generative adversarial network for single image super-resolution
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Cai, Changchun
    VISUAL COMPUTER, 2024, 40 (01): : 41 - 52
  • [44] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [45] A lightweight generative adversarial network for single image super-resolution
    Xinbiao Lu
    Xupeng Xie
    Chunlin Ye
    Hao Xing
    Zecheng Liu
    Changchun Cai
    The Visual Computer, 2024, 40 : 41 - 52
  • [46] Generative adversarial image super-resolution network for multiple degradations
    Lin, Hong
    Fan, Jing
    Zhang, Yangyi
    Peng, Dewei
    IET IMAGE PROCESSING, 2020, 14 (17) : 4520 - 4527
  • [47] Optimization of generative adversarial network based image super-resolution by using image mask
    Jiang, Qilei
    Ma, Yuanxi
    He Jishu/Nuclear Techniques, 2023, 46 (05): : 93 - 101
  • [48] Medical image super-resolution using a relativistic average generative adversarial network
    Ma, Yuan
    Liu, Kewen
    Xiong, Hongxia
    Fang, Panpan
    Li, Xiaojun
    Chen, Yalei
    Yan, Zejun
    Zhou, Zhijun
    Liu, Chaoyang
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 992
  • [49] Edge-Aware Image Super-Resolution Using a Generative Adversarial Network
    Das B.
    Roy S.D.
    SN Computer Science, 4 (2)
  • [50] HYPERSPECTRAL IMAGE SUPER-RESOLUTION USING GENERATIVE ADVERSARIAL NETWORK AND RESIDUAL LEARNING
    Huang, Qian
    Li, Wei
    Hu, Ting
    Tao, Ran
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3012 - 3016