Evidence of Inflated Prediction Performance: A Commentary on Machine Learning and Suicide Research

被引:38
作者
Jacobucci, Ross [1 ]
Littlefield, Andrew K. [2 ]
Millner, Alexander J. [3 ]
Kleiman, Evan M. [4 ]
Steinley, Douglas [5 ]
机构
[1] Univ Notre Dame, Dept Psychol, Notre Dame, IN 46556 USA
[2] Texas Tech Univ, Dept Psychol, Lubbock, TX 79409 USA
[3] Harvard Univ, Dept Psychol, Cambridge, MA 02138 USA
[4] Rutgers State Univ, Dept Psychol, New Brunswick, NJ USA
[5] Univ Missouri, Dept Psychol, Columbia, MO 65211 USA
关键词
machine learning; data mining; prediction; clinical psychology; suicide;
D O I
10.1177/2167702620954216
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
The use of machine learning is increasing in clinical psychology, yet it is unclear whether these approaches enhance the prediction of clinical outcomes. Several studies show that machine-learning algorithms outperform traditional linear models. However, many studies that have found such an advantage use the same algorithm, random forests with the optimism-corrected bootstrap, for internal validation. Through both a simulation and empirical example, we demonstrate that the pairing of nonlinear, flexible machine-learning approaches, such as random forests with the optimism-corrected bootstrap, provide highly inflated prediction estimates. We find no advantage for properly validated machine-learning models over linear models.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 27 条
[1]   Estimating the reproducibility of psychological science [J].
Aarts, Alexander A. ;
Anderson, Joanna E. ;
Anderson, Christopher J. ;
Attridge, Peter R. ;
Attwood, Angela ;
Axt, Jordan ;
Babel, Molly ;
Bahnik, Stepan ;
Baranski, Erica ;
Barnett-Cowan, Michael ;
Bartmess, Elizabeth ;
Beer, Jennifer ;
Bell, Raoul ;
Bentley, Heather ;
Beyan, Leah ;
Binion, Grace ;
Borsboom, Denny ;
Bosch, Annick ;
Bosco, Frank A. ;
Bowman, Sara D. ;
Brandt, Mark J. ;
Braswell, Erin ;
Brohmer, Hilmar ;
Brown, Benjamin T. ;
Brown, Kristina ;
Bruening, Jovita ;
Calhoun-Sauls, Ann ;
Callahan, Shannon P. ;
Chagnon, Elizabeth ;
Chandler, Jesse ;
Chartier, Christopher R. ;
Cheung, Felix ;
Christopherson, Cody D. ;
Cillessen, Linda ;
Clay, Russ ;
Cleary, Hayley ;
Cloud, Mark D. ;
Cohn, Michael ;
Cohoon, Johanna ;
Columbus, Simon ;
Cordes, Andreas ;
Costantini, Giulio ;
Alvarez, Leslie D. Cramblet ;
Cremata, Ed ;
Crusius, Jan ;
DeCoster, Jamie ;
DeGaetano, Michelle A. ;
Della Penna, Nicolas ;
den Bezemer, Bobby ;
Deserno, Marie K. .
SCIENCE, 2015, 349 (6251)
[2]   Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation [J].
Belsher, Bradley E. ;
Smolenski, Derek J. ;
Pruitt, Larry D. ;
Bush, Nigel E. ;
Beech, Erin H. ;
Workman, Don E. ;
Morgan, Rebecca L. ;
Evatt, Daniel P. ;
Tucker, Jennifer ;
Skopp, Nancy A. .
JAMA PSYCHIATRY, 2019, 76 (06) :642-651
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   The use of machine learning in the study of suicidal and non-suicidal self-injurious thoughts and behaviors: A systematic review [J].
Burke, Taylor A. ;
Ammerman, Brooke A. ;
Jacobucci, Ross .
JOURNAL OF AFFECTIVE DISORDERS, 2019, 245 :869-884
[5]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22
[6]  
Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI [10.1146/annurev-clinpsy-032816045037, 10.1146/annurev-clinpsy-032816-045037]
[7]   Model Complexity Improves the Prediction of Nonsuicidal Self-Injury [J].
Fox, Kathryn R. ;
Huang, Xieyining ;
Linthicum, Kathryn P. ;
Wang, Shirley B. ;
Franklin, Joseph C. ;
Ribeiro, Jessica D. .
JOURNAL OF CONSULTING AND CLINICAL PSYCHOLOGY, 2019, 87 (08) :684-692
[8]   Psychological primitives can make sense of biopsychosocial factor complexity in psychopathology [J].
Franklin, Joseph C. .
BMC MEDICINE, 2019, 17 (01)
[9]   A decision-theoretic generalization of on-line learning and an application to boosting [J].
Freund, Y ;
Schapire, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :119-139
[10]   Stochastic gradient boosting [J].
Friedman, JH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) :367-378