Application of Optogenetics for Muscle Cells and Stem Cells

被引:6
作者
Asano, Toshifumi [1 ]
Teh, Daniel Boon Loong [2 ]
Yawo, Hiromu [3 ]
机构
[1] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Bunkyo Ku, Tokyo, Japan
[2] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba, Japan
来源
OPTOGENETICS: LIGHT-SENSING PROTEINS AND THEIR APPLICATIONS IN NEUROSCIENCE AND BEYOND, 2ND EDITION | 2021年 / 1293卷
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Cardiac muscle; Smooth muscle; Skeletal muscle; Myoblast; Myocyte; EC coupling; T tubule; Sarcomere; Cardiac pacemaker; Spinal cord injury; Amyotrophic lateral sclerosis; ALS; Stem cell; iPSC; ESC; NSC; Neural graft; Neurogenesis; Microenvironment; Ca2+; CARDIAC OPTOGENETICS; OPTICAL CONTROL; LIGHT; NEURONS; STIMULATION; DEPOLARIZATION; CONTRACTION; MODULATION; GRAFTS; MODELS;
D O I
10.1007/978-981-15-8763-4_23
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This chapter describes the current progress of basic research, and potential therapeutic applications primarily focused on the optical manipulation of muscle cells and neural stem cells using microbial rhodopsin as a light-sensitive molecule. Since the contractions of skeletal, cardiac, and smooth muscle cells are mainly regulated through their membrane potential, several studies have been demonstrated to up- or downregulate the muscle contraction directly or indirectly using optogenetic actuators or silencers with defined stimulation patterns and intensities. Light-dependent oscillation of membrane potential also facilitates the maturation of myocytes with the development of T tubules and sarcomere structures, tandem arrays of minimum contractile units consists of contractile proteins and cytoskeletal proteins. Optogenetics has been applied to various stem cells and multipotent/pluripotent cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate light-sensitive neurons and to facilitate neuroscience. The chronic optical stimulation of the channelrhodopsin-expressing neural stem cells facilitates their neural differentiation. There are potential therapeutic applications of optogenetics in cardiac pacemaking, muscle regeneration/maintenance, locomotion recovery for the treatment of muscle paralysis due to motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Optogenetics would also facilitate maturation, network integration of grafted neurons, and improve the microenvironment around them when applied to stem cells.
引用
收藏
页码:359 / 375
页数:17
相关论文
共 71 条
  • [1] Multiscale Computational Models for Optogenetic Control of Cardiac Function
    Abilez, Oscar J.
    Wong, Jonathan
    Prakash, Rohit
    Deisseroth, Karl
    Zarins, Christopher K.
    Kuhl, Ellen
    [J]. BIOPHYSICAL JOURNAL, 2011, 101 (06) : 1326 - 1334
  • [2] Optogenetics: 10 years after ChR2 in neurons-views from the community
    Adamantidis, Antoine
    Arber, Silvia
    Bains, Jaideep S.
    Bamberg, Ernst
    Bonci, Antonello
    Buzsaki, Gyoergy
    Cardin, Jessica A.
    Costa, Rui M.
    Dan, Yang
    Goda, Yukiko
    Graybiel, Ann M.
    Haeusser, Michael
    Hegemann, Peter
    Huguenard, John R.
    Insel, Thomas R.
    Janak, Patricia H.
    Johnston, Daniel
    Josselyn, Sheena A.
    Koch, Christof
    Kreitzer, Anatol C.
    Luescher, Christian
    Malenka, Robert C.
    Miesenboeck, Gero
    Nagel, Georg
    Roska, Botond
    Schnitzer, Mark J.
    Shenoy, Krishna V.
    Soltesz, Ivan
    Sternson, Scott M.
    Tsien, Richard W.
    Tsien, Roger Y.
    Turrigiano, Gina G.
    Tye, Kay M.
    Wilson, Rachel I.
    [J]. NATURE NEUROSCIENCE, 2015, 18 (09) : 1202 - 1212
  • [3] Astrocyte scar formation aids central nervous system axon regeneration
    Anderson, Mark A.
    Burda, Joshua E.
    Ren, Yilong
    Ao, Yan
    O'Shea, Timothy M.
    Kawaguchi, Riki
    Coppola, Giovanni
    Khakh, Baljit S.
    Deming, Timothy J.
    Sofroniew, Michael V.
    [J]. NATURE, 2016, 532 (7598) : 195 - +
  • [4] An optical neural interface:: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology
    Aravanis, Alexander M.
    Wang, Li-Ping
    Zhang, Feng
    Meltzer, Leslie A.
    Mogri, Murtaza Z.
    Schneider, M. Bret
    Deisseroth, Karl
    [J]. JOURNAL OF NEURAL ENGINEERING, 2007, 4 (03) : S143 - S156
  • [5] Optogenetic Control of Cardiac Function
    Arrenberg, Aristides B.
    Stainier, Didier Y. R.
    Baier, Herwig
    Huisken, Jan
    [J]. SCIENCE, 2010, 330 (6006) : 971 - 974
  • [6] Organelle Optogenetics: Direct Manipulation of Intracellular Ca2+ Dynamics by Light
    Asano, Toshifumi
    Igarashi, Hiroyuki
    Ishizuka, Toru
    Yawo, Hiromu
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [7] Optogenetic induction of contractile ability in immature C2C12 myotubes
    Asano, Toshifumi
    Ishizuka, Toru
    Morishima, Keisuke
    Yawo, Hiromu
    [J]. SCIENTIFIC REPORTS, 2015, 5 : 8317
  • [8] Optically controlled contraction of photosensitive skeletal muscle cells
    Asano, Toshifumi
    Ishizua, Toru
    Yawo, Hiromu
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (01) : 199 - 204
  • [9] Optogenetics Reveal Delayed Afferent Synaptogenesis on Grafted Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors
    Avaliani, Natalia
    Sorensen, Andreas Toft
    Ledri, Marco
    Bengzon, Johan
    Koch, Philipp
    Bruestle, Oliver
    Deisseroth, Karl
    Andersson, My
    Kokaia, Merab
    [J]. STEM CELLS, 2014, 32 (12) : 3088 - 3098
  • [10] Bi-stable neural state switches
    Berndt, Andre
    Yizhar, Ofer
    Gunaydin, Lisa A.
    Hegemann, Peter
    Deisseroth, Karl
    [J]. NATURE NEUROSCIENCE, 2009, 12 (02) : 229 - 234