Achievable accuracy of parameter estimation for multidimensional NMR experiments

被引:13
作者
Ober, RJ [1 ]
Lin, ZP
Ye, H
Ward, ES
机构
[1] Univ Texas, Eric Jonsson Sch Elect Engn & Comp Sci, Ctr Syst Commun & Signal Proc EC33, Richardson, TX 75083 USA
[2] Univ Texas, SW Med Ctr, Ctr Canc Immunobiol NB9 106, Dallas, TX 75235 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[4] Univ Texas, Ctr Immunol, Dallas, TX 75235 USA
关键词
nuclear magnetic resonance (NMR) spectroscopy; Cramer-Rao lower bound (CRLB); Fisher information matrix; nonlinear least-squares estimation; nonuniform sampling; nonuniform averaging; experimental design;
D O I
10.1006/jmre.2002.2560
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A fundamental issue in NMR spectroscopy is the estimation of parameters such as the Larmor frequencies of nuclei, J coupling constants, and relaxation rates. The Cramer-Rao lower bound provides a method to assess the best achievable accuracy of parameter estimates resulting from an unbiased estimation procedure. We show how the Cramer-Rao lower bound can be calculated for data obtained from multidimensional NMR experiments. The Cramer-Rao lower bound is compared to the variance of parameter estimates for simulated data using a least-squares estimation procedure. It is also shown how our results on the Cramer-Rao lower bound can be used to analyze whether an experimental design can be improved to provide experimental data which can result in parameter estimates with higher accuracy. The concept of nonuniform averaging in the indirect dimension is introduced and studied in connection with nonuniform sampling of the data. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [42] Damped sinusoidal signals parameter estimation in frequency domain
    Qian, Fengyong
    Leung, Shuhung
    Zhu, Yuesheng
    Wong, Waiki
    Pao, Derek
    Lau, Winghong
    SIGNAL PROCESSING, 2012, 92 (02) : 381 - 391
  • [43] Fractional factorial design for parameter sweep experiments using Nimrod/E
    Peachey, T. C.
    Diamond, N. T.
    Abramson, D. A.
    Sudholt, W.
    Michailova, A.
    Amirriazi, S.
    SCIENTIFIC PROGRAMMING, 2008, 16 (2-3) : 217 - 230
  • [44] PERIODIC CRB FOR NON-BAYESIAN PARAMETER ESTIMATION
    Routtenberg, Tirza
    Tabrikian, Joseph
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2448 - 2451
  • [45] Effect of Pixelation on the Parameter Estimation of Single Molecule Trajectories
    Vahid, Milad R.
    Hanzon, Bernard
    Ober, Raimund J.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 98 - 113
  • [46] Deep optimal experimental design for parameter estimation problems
    Siddiqui, Md Shahriar Rahim
    Rahmim, Arman
    Haber, Eldad
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [47] Estimation of the Measurement Accuracy of Wireless Passive Resonance Sensors
    Reindl, Leonhard M.
    Aftab, Taimur
    Schaechtle, Thomas
    Ostertag, Thomas
    Luo, Wei
    Rupitsch, Stefan Johann
    SENSORS, 2025, 25 (03)
  • [48] Triple resonance NMR relaxation experiments for studies of intrinsically disordered proteins
    Srb, Pavel
    Novacek, Jiri
    Kaderavek, Pavel
    Rabatinova, Alzbeta
    Krasny, Libor
    Zidkova, Jitka
    Bobalova, Janette
    Sklenar, Vladimir
    Zidek, Lukas
    JOURNAL OF BIOMOLECULAR NMR, 2017, 69 (03) : 133 - 146
  • [49] Stacking Designs: Designing Multifidelity Computer Experiments with Target Predictive Accuracy
    Sung, Chih-Li
    Ji, Yi
    Mak, Simon
    Wang, Wenjia
    Tang, Tao
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (01) : 157 - 181
  • [50] MULTIDIMENSIONAL CRAMER-RAO LOWER BOUND FOR NON-UNIFORMLY SAMPLED NMR SIGNALS
    Mansson, Anders
    Jakobsson, Andreas
    Akke, Mikael
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 974 - 978