Achievable accuracy of parameter estimation for multidimensional NMR experiments

被引:13
作者
Ober, RJ [1 ]
Lin, ZP
Ye, H
Ward, ES
机构
[1] Univ Texas, Eric Jonsson Sch Elect Engn & Comp Sci, Ctr Syst Commun & Signal Proc EC33, Richardson, TX 75083 USA
[2] Univ Texas, SW Med Ctr, Ctr Canc Immunobiol NB9 106, Dallas, TX 75235 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[4] Univ Texas, Ctr Immunol, Dallas, TX 75235 USA
关键词
nuclear magnetic resonance (NMR) spectroscopy; Cramer-Rao lower bound (CRLB); Fisher information matrix; nonlinear least-squares estimation; nonuniform sampling; nonuniform averaging; experimental design;
D O I
10.1006/jmre.2002.2560
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A fundamental issue in NMR spectroscopy is the estimation of parameters such as the Larmor frequencies of nuclei, J coupling constants, and relaxation rates. The Cramer-Rao lower bound provides a method to assess the best achievable accuracy of parameter estimates resulting from an unbiased estimation procedure. We show how the Cramer-Rao lower bound can be calculated for data obtained from multidimensional NMR experiments. The Cramer-Rao lower bound is compared to the variance of parameter estimates for simulated data using a least-squares estimation procedure. It is also shown how our results on the Cramer-Rao lower bound can be used to analyze whether an experimental design can be improved to provide experimental data which can result in parameter estimates with higher accuracy. The concept of nonuniform averaging in the indirect dimension is introduced and studied in connection with nonuniform sampling of the data. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Optimal Design of Experiments for Parameter Identification of Ceramic Porous Membranes
    Zhang, Fan
    Mangold, Michael
    Kienle, Achim
    CHEMICAL ENGINEERING & TECHNOLOGY, 2009, 32 (04) : 641 - 649
  • [32] Population Pharmacodynamic Parameter Estimation from Sparse Sampling: Effect of Sigmoidicity on Parameter Estimates
    Pai, Sudhakar M.
    Girgis, Suzette
    Batra, Vijay K.
    Girgis, Ihab G.
    AAPS JOURNAL, 2009, 11 (03): : 535 - 540
  • [33] Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction
    Bostock, M. J.
    Holland, D. J.
    Nietlispach, D.
    JOURNAL OF BIOMOLECULAR NMR, 2017, 68 (02) : 67 - 77
  • [34] Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction
    M. J. Bostock
    D. J. Holland
    D. Nietlispach
    Journal of Biomolecular NMR, 2017, 68 : 67 - 77
  • [35] Multiresponse Robust Engineering: Industrial Experiment Parameter Estimation
    Koleva, Elena G.
    Vuchkov, Ivan N.
    ADVANCES IN DATA ANALYSIS: THEORY AND APPLICATIONS TO RELIABILITY AND INFERENCE, DATA MINING, BIOINFORMATICS, LIFETIME DATA, AND NEURAL NETWORKS, 2010, : 337 - +
  • [36] INFORMATION GEOMETRY APPROACH TO PARAMETER ESTIMATION IN MARKOV CHAINS
    Hayashi, Masahito
    Watanabe, Shun
    ANNALS OF STATISTICS, 2016, 44 (04) : 1495 - 1535
  • [37] A flexible, adaptive traffic network simulation with parameter estimation
    Thonhofer, Elvira
    Luchini, Elisabeth
    Jakubek, Stefan
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 21 (01) : 63 - 77
  • [38] Parameter Estimation from Heterogeneous/Multimodal Data Sets
    Fijalkow, Inbar
    Heiman, Elad
    Messer, Hagit
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (03) : 390 - 393
  • [39] Spatial sampling design for parameter estimation of the covariance function
    Zhu, ZY
    Stein, ML
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 134 (02) : 583 - 603
  • [40] Parameter set selection for estimation of nonlinear dynamic systems
    Chu, Yunfei
    Hahn, Juergen
    AICHE JOURNAL, 2007, 53 (11) : 2858 - 2870