On the convergence of caratheodory numerical scheme for Mckean-Vlasov equations

被引:4
作者
Mezerdi, Mohamed Amine [1 ]
机构
[1] Univ Toulon & Var, Lab IMATH, La Garde 05, France
关键词
McKean-Vlasov equation; mean-field equation; carathé odory numerical scheme; wasserstein distance; delay equation; tightness; pathwise uniqueness; strong solution;
D O I
10.1080/07362994.2020.1845206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the strong convergence of the Caratheodory numerical scheme for a class of nonlinear McKean-Vlasov stochastic differential equations (MVSDE). We prove, under Lipschitz assumptions, the convergence of the approximate solutions to the unique solution of the MVSDE. Moreover, we show that the result remains valid, under continuous coefficients, provided that pathwise uniqueness holds. The proof is based on weak convergence techniques and the Skorokhod embedding theorem. In particular, this general result allows us to construct the unique strong solution of a MVSDE by using the Caratheodory numerical scheme. Examples under which pathwise uniqueness holds are given.
引用
收藏
页码:804 / 818
页数:15
相关论文
共 28 条
[1]   McKean-Vlasov limit for interacting systems with simultaneous jumps [J].
Andreis, Luisa ;
Pra, Paolo Dai ;
Fischer, Markus .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (06) :960-995
[2]  
[Anonymous], 2016, EXISTENCE UNIQUENESS
[3]  
Bahlali K., 1998, SEMIN PROBABILITY, P166
[4]   Stability of McKean-Vlasov stochastic differential equations and applications [J].
Bahlali, Khaled ;
Mezerdi, Mohamed Amine ;
Mezerdi, Brahim .
STOCHASTICS AND DYNAMICS, 2020, 20 (01)
[5]   Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons [J].
Baladron, Javier ;
Fasoli, Diego ;
Faugeras, Olivier ;
Touboul, Jonathan .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2012, 2 (01) :1-50
[6]  
Bell D. R., 1989, STOCHASTICS, V28
[7]   Caratheodory approximate solutions for a class of perturbed stochastic differential equations with reflecting boundary [J].
Benabdallah, Mohsine ;
Bourza, Mohamed .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (06) :936-954
[8]  
Benth F.E., 2007, Stochastic Analysis and Applications: The Abel Symposium 2005, V2
[9]  
Carmona R, 2018, PROB THEOR STOCH MOD, V83, P3, DOI 10.1007/978-3-319-58920-6
[10]  
Chaudru de Raynal P.-E., 2018, IN PRESS