Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order

被引:12
作者
Chen, Liang [1 ]
Huang, Chengdai [2 ]
Liu, Haidong [3 ]
Xia, Yonghui [4 ]
机构
[1] Wuyi Univ, Dept Math & Comp, Key Lab Cognit Comp & Intelligent Informat Proc F, Wu Yishan 354300, Peoples R China
[2] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
finite-time; anti-synchronization; chaotic systems; unknown parameters; FINITE-TIME SYNCHRONIZATION; NEURAL-NETWORKS; GENERALIZED SYNCHRONIZATION; STABILITY;
D O I
10.3390/math7060559
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper proves a unified analysis for finite-time anti-synchronization of a class of integer-order and fractional-order chaotic systems. We establish an effective controller to ensure that the chaotic system with unknown parameters achieves anti-synchronization in finite time under our controller. Then, we apply our results to the integer-order and fractional-order Lorenz system, respectively. Finally, numerical simulations are presented to show the feasibility of the proposed control scheme. At the same time, through the numerical simulation results, it is show that for the Lorenz chaotic system, when the order is greater, the more quickly is anti-synchronization achieved.
引用
收藏
页数:16
相关论文
共 47 条
[1]   Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique [J].
Aghababa, Mohammad Pourmahmood ;
Khanmohammadi, Sohrab ;
Alizadeh, Ghassem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) :3080-3091
[2]   Robust Finite-Time Anti-Synchronization of Chaotic Systems with Different Dimensions [J].
Ahmad, Israr ;
Saaban, Azizan Bin ;
Ibrahim, Adyda Binti ;
Shahzad, Mohammad .
MATHEMATICS, 2015, 3 (04) :1222-1240
[3]   Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1908-1920
[4]   On anti-synchronization of chaotic systems via nonlinear control [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (01) :170-179
[5]  
[Anonymous], 1952, Inequalities, Cambridge Mathematical Library
[6]   The Effects of Pade Numerical Integration in Simulation of Conservative Chaotic Systems [J].
Butusov, Denis ;
Karimov, Artur ;
Tutueva, Aleksandra ;
Kaplun, Dmitry ;
Nepomuceno, Erivelton G. .
ENTROPY, 2019, 21 (04)
[7]   ADAPTIVE FULL STATE HYBRID FUNCTION PROJECTIVE SYNCHRONIZATION OF FINANCIAL HYPERCHAOTIC SYSTEMS WITH UNCERTAIN PARAMETERS [J].
Cai, Guoliang ;
Yao, Lan ;
Hu, Pei ;
Fang, Xiulei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (08) :2019-2028
[8]   Adaptive synchronization of neural networks with or without time-varying delay [J].
Cao, JD ;
Lu, JQ .
CHAOS, 2006, 16 (01)
[9]   Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme [J].
Chen, Diyi ;
Zhang, Runfan ;
Ma, Xiaoyi ;
Liu, Si .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :35-55
[10]   Global anti-synchronization of master-slave chaotic modified Chua's circuits coupled by linear feedback control [J].
Chen, Yun ;
Li, Minyong ;
Cheng, Zhifeng .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) :567-573