Polynomial Input-Output Stability for Linear Systems

被引:5
作者
Paunonen, Lassi [1 ]
Laakkonen, Petteri [1 ]
机构
[1] Tampere Univ Technol, Dept Math, FIN-33101 Tampere, Finland
关键词
Distributed parameter system; stability;
D O I
10.1109/TAC.2015.2398890
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the concept of polynomial input-output stability for infinite-dimensional linear systems. We show that this stability type corresponds exactly to the recent notion of P-stability in the frequency domain. In addition, we show that on a Hilbert space a regular linear system whose system operator generates a polynomially stable semigroup is always polynomially input-output stable, and present additional conditions under which the system is input-output stable. The results are illustrated with an example of a polynomially input-output stable one-dimensional wave system.
引用
收藏
页码:2797 / 2802
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]  
Batty C.J.K., J EUROP MAT IN PRESS
[4]  
Benchimol C. D., 1977, APPL MATH OPT, V4, P225
[5]   Optimal polynomial decay of functions and operator semigroups [J].
Borichev, Alexander ;
Tomilov, Yuri .
MATHEMATISCHE ANNALEN, 2010, 347 (02) :455-478
[6]   Sufficient and necessary conditions for the solvability of the state feedback regulation problem [J].
Boulite, S. ;
Bouslous, H. ;
Maniar, L. ;
Saij, R. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (17) :2958-2973
[7]   Transfer functions of distributed parameter systems: A tutorial [J].
Curtain, Ruth ;
Morris, Kirsten .
AUTOMATICA, 2009, 45 (05) :1101-1116
[8]  
Haase M., 2006, Operator Theory: Advances and Applications
[9]   FREQUENCY DOMAIN ROBUST REGULATION OF SIGNALS GENERATED BY AN INFINITE-DIMENSIONAL EXOSYSTEM [J].
Laakkonen, Petteri ;
Pohjolainen, Seppo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (01) :139-166
[10]  
Latushkin Y, 2001, OPER THEOR, V129, P341